Calibrating Bayesian generative machine learning for Bayesiamplification

被引:0
|
作者
Bieringer, S. [1 ]
Diefenbacher, S. [2 ]
Kasieczka, G. [1 ]
Trabs, M. [3 ]
机构
[1] Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Karlsruhe Inst Technol, Dept Math, Englerstr 2, D-76131 Karlsruhe, Germany
来源
关键词
Bayesian neural networks; generative neural networks; data amplification; fast detector simulation;
D O I
10.1088/2632-2153/ad9136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, combinations of generative and Bayesian deep learning have been introduced in particle physics for both fast detector simulation and inference tasks. These neural networks aim to quantify the uncertainty on the generated distribution originating from limited training statistics. The interpretation of a distribution-wide uncertainty however remains ill-defined. We show a clear scheme for quantifying the calibration of Bayesian generative machine learning models. For a Continuous Normalizing Flow applied to a low-dimensional toy example, we evaluate the calibration of Bayesian uncertainties from either a mean-field Gaussian weight posterior, or Monte Carlo sampling network weights, to gauge their behaviour on unsteady distribution edges. Well calibrated uncertainties can then be used to roughly estimate the number of uncorrelated truth samples that are equivalent to the generated sample and clearly indicate data amplification for smooth features of the distribution.<br />
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Predictive and generative machine learning models for photonic crystals
    Christensen, Thomas
    Loh, Charlotte
    Picek, Stjepan
    Jing, Li
    Fisher, Sophie
    Ceperic, Vladimir
    Joannopoulos, John D.
    Soljacic, Marin
    Jakobovic, Domagoj
    NANOPHOTONICS, 2020, 9 (13) : 4183 - 4192
  • [42] Regularising Inverse Problems with Generative Machine Learning Models
    Duff, M. A. G.
    Campbell, N. D. F.
    Ehrhardt, M. J.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2024, 66 (01) : 37 - 56
  • [43] A quantum machine learning algorithm based on generative models
    Gao, X.
    Zhang, Z. -Y.
    Duan, L. -M.
    SCIENCE ADVANCES, 2018, 4 (12):
  • [44] GenELM: Generative Extreme Learning Machine feature representation
    Zhou, Shichao
    Deng, Chenwei
    Wang, Wenzheng
    Huang, Guang-Bin
    Zhao, Baojun
    NEUROCOMPUTING, 2019, 362 : 41 - 50
  • [45] Regularising Inverse Problems with Generative Machine Learning Models
    M. A. G. Duff
    N. D. F. Campbell
    M. J. Ehrhardt
    Journal of Mathematical Imaging and Vision, 2024, 66 (1) : 37 - 56
  • [46] Application of Machine Learning for Calibrating Gas Sensors for Methane Emissions Monitoring
    Andrews, Ballard
    Chakrabarti, Aditi
    Dauphin, Mathieu
    Speck, Andrew
    SENSORS, 2023, 23 (24)
  • [47] Machine learning in calibrating tropical cyclone intensity forecast of ECMWF EPS
    Chan, Ming Hei Kenneth
    Wong, Wai Kin
    Au-Yeung, Kin Chung
    METEOROLOGICAL APPLICATIONS, 2021, 28 (06)
  • [48] Calibrating long-period variables as standard candles with machine learning
    Rau, Markus Michael
    Koposov, Sergey E.
    Trac, Hy
    Mandelbaum, Rachel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (01) : 409 - 421
  • [49] The BUDS Language for Distributed Bayesian Machine Learning
    Gao, Zekai J.
    Luo, Shangyu
    Pere, Luis L.
    Jermaine, Chris
    SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2017, : 961 - 976
  • [50] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)