Calibrating Bayesian generative machine learning for Bayesiamplification

被引:0
|
作者
Bieringer, S. [1 ]
Diefenbacher, S. [2 ]
Kasieczka, G. [1 ]
Trabs, M. [3 ]
机构
[1] Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Karlsruhe Inst Technol, Dept Math, Englerstr 2, D-76131 Karlsruhe, Germany
来源
关键词
Bayesian neural networks; generative neural networks; data amplification; fast detector simulation;
D O I
10.1088/2632-2153/ad9136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, combinations of generative and Bayesian deep learning have been introduced in particle physics for both fast detector simulation and inference tasks. These neural networks aim to quantify the uncertainty on the generated distribution originating from limited training statistics. The interpretation of a distribution-wide uncertainty however remains ill-defined. We show a clear scheme for quantifying the calibration of Bayesian generative machine learning models. For a Continuous Normalizing Flow applied to a low-dimensional toy example, we evaluate the calibration of Bayesian uncertainties from either a mean-field Gaussian weight posterior, or Monte Carlo sampling network weights, to gauge their behaviour on unsteady distribution edges. Well calibrated uncertainties can then be used to roughly estimate the number of uncorrelated truth samples that are equivalent to the generated sample and clearly indicate data amplification for smooth features of the distribution.<br />
引用
收藏
页数:12
相关论文
共 50 条
  • [31] RainForests: A Machine Learning Approach to Calibrating NWP Precipitation Forecasts
    Trotta, Belinda
    Owen, Benjamin
    Liu, Jiaping
    Weymouth, Gary
    Gale, Thomas
    Hume, Timothy
    Schubert, Anja
    Canvin, James
    Mentiplay, Daniel
    Whelan, jennifer
    Johnson, Robert
    WEATHER AND FORECASTING, 2024, 39 (11) : 1715 - 1732
  • [32] Bayesian Volumetric Autoregressive Generative Models for Better Semisupervised Learning
    Pombo, Guilherme
    Gray, Robert
    Varsavsky, Thomas
    Ashburner, John
    Nachev, Parashkev
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 429 - 437
  • [33] Bayesian Inference With Nonlinear Generative Models: Comments on Secure Learning
    Bereyhi, Ali
    Loureiro, Bruno
    Krzakala, Florent
    Mueller, Ralf R.
    Schulz-Baldes, Hermann
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (12) : 7998 - 8028
  • [34] Discriminative vs. generative learning of Bayesian network classifiers
    Santafe, Guzman
    Lozano, Jose A.
    Larranaga, Pedro
    Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Proceedings, 2007, 4724 : 453 - 464
  • [35] Bayesian network structure learning using quantum generative models
    Ohno, Hiroshi
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)
  • [36] Open Set Deep Learning with A Bayesian Nonparametric Generative Model
    Ye, Xulun
    Zhao, Jieyu
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2133 - 2141
  • [37] GENERATIVE MACHINE LEARNING METHODS FOR MULTIVARIATE ENSEMBLE POSTPROCESSING
    Chen, Jieyu
    Janke, Tim
    Steinke, Florian
    Lerch, Sebastian
    ANNALS OF APPLIED STATISTICS, 2024, 18 (01): : 159 - 183
  • [38] Data augmentation and generative machine learning on the cloud platform
    Piyush Vyas
    Kaushik Muthusamy Ragothaman
    Akhilesh Chauhan
    Bhaskar Rimal
    International Journal of Information Technology, 2024, 16 (8) : 4833 - 4843
  • [39] Machine learning-aided generative molecular design
    Du, Yuanqi
    Jamasb, Arian R.
    Guo, Jeff
    Fu, Tianfan
    Harris, Charles
    Wang, Yingheng
    Duan, Chenru
    Lio, Pietro
    Schwaller, Philippe
    Blundell, Tom L.
    NATURE MACHINE INTELLIGENCE, 2024, 6 (06) : 589 - 604
  • [40] A comprehensive survey and analysis of generative models in machine learning
    Harshvardhan, G. M.
    Gourisaria, Mahendra Kumar
    Pandey, Manjusha
    Rautaray, Siddharth Swarup
    COMPUTER SCIENCE REVIEW, 2020, 38 (38)