Missing values imputation in ocean buoy time series data

被引:0
|
作者
Chakraborty, Samarpan [1 ]
Ide, Kayo [2 ]
Balachandran, Balakumar [3 ]
机构
[1] Univ Maryland, Dept Mech Engn, Computat Dynam Lab, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci,Dept Math, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
关键词
Missing values imputation; Wave buoys; Wave model; neural networks; Data-driven methods; NEURAL-NETWORKS; WEST-COAST; WAVE DATA; PREDICTIONS;
D O I
10.1016/j.oceaneng.2024.120145
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Absence of data or gaps in ocean wave data sequences can result in inaccurate statistical analysis as well as pose problems for forecasting purposes, which is essential for the analysis of sudden oceanic wave formations. Such analyses are critical for maritime traffic and offshore structures. In this article, missing data imputation approaches have been investigated by using field data obtained from ocean buoys. To achieve this, the wave surface elevation is first decomposed into slow varying amplitudes through the use of a wave model. Non-linear datadriven methods as well as linear methods are then used for imputation of continuous gaps of varying lengths in these time sequences. The capabilities of the different models in the gap filling tasks are then demonstrated by using different metrics for diverse wave scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A missing values imputation method for time series data: an efficient method to investigate the health effects of sulphur dioxide levels
    Weerasinghe, Swarna
    ENVIRONMETRICS, 2010, 21 (02) : 162 - 172
  • [32] Multivariate Time Series Missing Data Imputation Using Recurrent Denoising Autoencoder
    Zhang, Jianye
    Yin, Peng
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 760 - 764
  • [33] Visual Imputation Analytics for Missing Time-Series Data in Bayesian Network
    Yeon, Hanbyul
    Son, Hyesook
    Jang, Yun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 303 - 310
  • [34] REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS
    SCHNEIDERMAN, ED
    KOWALSKI, CJ
    WILLIS, SM
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02): : 121 - 133
  • [35] Treatment of missing values with imputation for the analysis of otologic data
    Laurikkala, J
    Kentala, E
    Juhola, M
    Pyykkö, I
    MEDICAL INFORMATICS EUROPE '99, 1999, 68 : 428 - 431
  • [36] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [37] Imputation of missing values in multi-view data
    van Loon, Wouter
    de Vos, Frank
    de Vos, Frank
    Koini, Marisa
    Schmidt, Reinhold
    de Rooij, Mark
    INFORMATION FUSION, 2024, 111
  • [38] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    BMC Bioinformatics, 8
  • [39] A First Approach on Big Data Missing Values Imputation
    Montesdeoca, Besay
    Luengo, Julian
    Maillo, Jesus
    Garcia-Gil, Diego
    Garcia, Salvador
    Herrera, Francisco
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS 2019), 2019, : 315 - 323
  • [40] A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
    Faquih, Tariq
    van Smeden, Maarten
    Luo, Jiao
    le Cessie, Saskia
    Kastenmueller, Gabi
    Krumsiek, Jan
    Noordam, Raymond
    van Heemst, Diana
    Rosendaal, Frits R.
    van Hylckama Vlieg, Astrid
    Willems van Dijk, Ko
    Mook-Kanamori, Dennis O.
    METABOLITES, 2020, 10 (12) : 1 - 23