Discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan statistics

被引:0
|
作者
Janeja V.P. [1 ]
Gangopadhyay A. [1 ]
Mohammadi S. [1 ]
Palanisamy R. [1 ]
机构
[1] Department of Information Systems, University of Maryland Baltimore County, Baltimore, MD
来源
关键词
Anomaly detection; Space-time scan; Spatial data mining; Spatial scan;
D O I
10.1002/sam.10122
中图分类号
学科分类号
摘要
In this paper, we address the discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan (DSTS) Statistics. Anomalous spatio-temporal window discovery is required in several key applications such as disease outbreaks in a region over a period of time, monitoring drinking water quality over time, identifying health risks to the population in a polluted region and urbanization patterns in a city, to name a few. In this paper, we address the issues arising out of the simultaneous effects of the properties of space and time in the discovery of anomalous windows. In such a framework, we identify (i) at what point in time the window changes, (ii) the spatial patterns of change over time, and (iii) a spatial extent in time which is completely or partially deviant with respect to the rest of the anomalous spatio-temporal windows. None of the current approaches address all these issues in combination. We identify this knowledge keeping in mind the spatial and temporal autocorrelation, morphing shape of the window, and possible spatial or temporal discontinuities of the window. Subsequently, we perform experiments on several real-world datasets, to validate our approach, while comparing with the established approaches.© 2011 Wiley Periodicals, Inc., A Wiley Company.
引用
收藏
页码:276 / 300
页数:24
相关论文
共 50 条
  • [41] Social network discovery by mining spatio-temporal events
    Lauw H.W.
    Lim E.-P.
    Pang H.
    Tan T.-T.
    Computational & Mathematical Organization Theory, 2005, 11 (2): : 97 - 118
  • [42] Spatio-temporal discovery: Appearance plus behavior = agentsp
    Guha, Prithwijitg
    Mukerjee, Amitabha
    Venkatesh, K. S.
    COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, 4338 : 516 - +
  • [43] stLD: Towards a Spatio-temporal Link Discovery Framework
    Santipantakis, Georgios M.
    Glenis, Apostolos
    Doulkeridis, Christos
    Vlachou, Akrivi
    Vouros, George A.
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON SEMANTIC BIG DATA (SBD 2019), 2019,
  • [44] A Spatio-Temporal Approach to the Discovery of Online Social Trends
    Achrekar, Harshavardhan
    Fang, Zheng
    Li, You
    Chen, Cindy
    Liu, Benyuan
    Wang, Jie
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 510 - 524
  • [45] Hierarchical Spatio-Temporal Pattern Discovery and Predictive Modeling
    Yu, Chung-Hsien
    Ding, Wei
    Morabito, Melissa
    Chen, Ping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (04) : 979 - 993
  • [46] Spatio-temporal abnormal cluster discovery in arrival data
    Liu, Jun-Ling
    Wei, Ru-Yu
    Yu, Ge
    Sun, Huan-Liang
    Yao, Cheng-Wei
    Liu, Jun-Ling (liujl@sjzu.edu.cn), 1600, Chinese Academy of Sciences (25): : 225 - 235
  • [47] ENDURANTISM AND SPATIO-TEMPORAL EXTENSION
    Rossi, Carlo
    IDEAS Y VALORES, 2023, 72 (183) : 121 - 143
  • [48] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    SORT, 2011, 35 (02): : 165 - 178
  • [49] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [50] Spatio-temporal convolution kernels
    Konstantin Knauf
    Daniel Memmert
    Ulf Brefeld
    Machine Learning, 2016, 102 : 247 - 273