Discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan statistics

被引:0
|
作者
Janeja V.P. [1 ]
Gangopadhyay A. [1 ]
Mohammadi S. [1 ]
Palanisamy R. [1 ]
机构
[1] Department of Information Systems, University of Maryland Baltimore County, Baltimore, MD
来源
关键词
Anomaly detection; Space-time scan; Spatial data mining; Spatial scan;
D O I
10.1002/sam.10122
中图分类号
学科分类号
摘要
In this paper, we address the discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan (DSTS) Statistics. Anomalous spatio-temporal window discovery is required in several key applications such as disease outbreaks in a region over a period of time, monitoring drinking water quality over time, identifying health risks to the population in a polluted region and urbanization patterns in a city, to name a few. In this paper, we address the issues arising out of the simultaneous effects of the properties of space and time in the discovery of anomalous windows. In such a framework, we identify (i) at what point in time the window changes, (ii) the spatial patterns of change over time, and (iii) a spatial extent in time which is completely or partially deviant with respect to the rest of the anomalous spatio-temporal windows. None of the current approaches address all these issues in combination. We identify this knowledge keeping in mind the spatial and temporal autocorrelation, morphing shape of the window, and possible spatial or temporal discontinuities of the window. Subsequently, we perform experiments on several real-world datasets, to validate our approach, while comparing with the established approaches.© 2011 Wiley Periodicals, Inc., A Wiley Company.
引用
收藏
页码:276 / 300
页数:24
相关论文
共 50 条
  • [31] Spatio-temporal filtering using wavelets
    M. D. Ruiz-Medina
    J. M. Angulo
    Stochastic Environmental Research and Risk Assessment, 2002, 16 : 241 - 266
  • [32] Spatio-temporal aggregation using sketches
    Tao, YF
    Kollios, G
    Considine, J
    Li, FF
    Papadias, D
    20TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2004, : 214 - 225
  • [33] Beamforming using spatio-temporal filtering
    Liu, J
    Kim, K
    Insana, MF
    Brunke, S
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 1216 - 1219
  • [34] Spatio-temporal filtering using wavelets
    Ruiz-Medina, MD
    Angulo, JM
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2002, 16 (04) : 241 - 266
  • [35] Spatio-Temporal Interpolation using gstat
    Graeler, Benedikt
    Pebesma, Edzer
    Heuvelink, Gerard
    R JOURNAL, 2016, 8 (01): : 204 - 218
  • [36] TEMPORAL PARTS AND SPATIO-TEMPORAL ANALOGIES
    MEILAND, JW
    AMERICAN PHILOSOPHICAL QUARTERLY, 1966, 3 (01) : 64 - 70
  • [37] Bayesian design for sampling anomalous spatio-temporal data
    Buchhorn, Katie
    Mengersen, Kerrie
    Santos-Fernandez, Edgar
    Mcgree, James
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [38] SPATIO-TEMPORAL VISUAL RECEPTIVE-FIELDS AS REVEALED BY SPATIO-TEMPORAL RANDOM NOISE
    HIDA, E
    NAKA, K
    ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1982, 37 (10): : 1048 - 1049
  • [39] Detecting spatio-temporal hotspots of scarlet fever in Taiwan with spatio-temporal Gi* statistic
    Tang, Jia-Hong
    Tseng, Tzu-Jung
    Chan, Ta-Chien
    PLOS ONE, 2019, 14 (04):
  • [40] Spatio-temporal geographical entity and a self-contained frame of spatio-temporal queries
    Wang, XD
    Mao, QZ
    Gong, JW
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1959 - 1961