Well-Posedness and Convergence Results for History-Dependent Inclusions

被引:0
|
作者
Sofonea, Mircea [1 ]
Tarzia, Domingo A. [2 ,3 ]
机构
[1] Laboratoire de Mathématiques et Physique, University of Perpignan, Perpignan, France
[2] Departamento de Matemática, FCE Universidad Austral Paraguay, Rosario, Argentina
[3] Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario,S2000EZP, Argentina
基金
欧盟地平线“2020”;
关键词
Choquet integral - Constitutive models - Hilbert spaces - Mathematical operators;
D O I
10.1080/01630563.2024.2423246
中图分类号
学科分类号
摘要
We consider an inclusion in a real Hilbert space governed by a time-dependent set of constraints and a history-dependent operator. We introduce the concept of (Formula presented.) - well-posedness for this inclusion, associated to a given Tykhonov triple (Formula presented.). Next, we provide a (Formula presented.) -well-posedness result that we use in order to deduce the continuous dependence of the solution with respect to the data. Then, we state and prove a convergence criterion to the solution of the inclusion that we use to prove a convergence result for an associate penalty problem. Moreover, we show that this criterion allows us to construct a Tykhonov triple (Formula presented.) -which give rise to an optimal well-posedness concept for the corresponding inclusion. Finally, we use these abstract results in the study of a nonlinear viscoelastic constitutive law with long memory term and unilateral constraints. © 2024 Taylor & Francis Group, LLC.
引用
收藏
页码:45 / 67
相关论文
共 50 条
  • [1] Well-posedness of history-dependent evolution inclusions with applications
    Stanisław Migórski
    Yunru Bai
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [2] Well-posedness of history-dependent evolution inclusions with applications
    Migorski, Stanislaw
    Bai, Yunru
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [3] WELL-POSEDNESS OF HISTORY-DEPENDENT SWEEPING PROCESSES
    Migorski, Stanislaw
    Sofonea, Mircea
    Zeng, Shengda
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1082 - 1107
  • [4] DUALITY ARGUMENTS FOR WELL-POSEDNESS OF HISTORY-DEPENDENT VARIATIONAL INEQUALITIES
    Hu, Rong
    Sofonea, Mircea
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (03)
  • [5] Tykhonov triples, well-posedness and convergence results
    Xiao, Yi-Bin
    Sofonea, Mircea
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (01) : 135 - 143
  • [6] Convergence Results for History-Dependent Variational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    AXIOMS, 2024, 13 (05)
  • [7] Convergence and Optimization Results for a History-Dependent Variational Problem
    Sofonea, Mircea
    Matei, Andaluzia
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 157 - 182
  • [8] Convergence and Optimization Results for a History-Dependent Variational Problem
    Mircea Sofonea
    Andaluzia Matei
    Acta Applicandae Mathematicae, 2020, 169 : 157 - 182
  • [9] Tykhonov Well-Posedness and Convergence Results for Contact Problems with Unilateral Constraints
    Sofonea, Mircea
    Shillor, Meir
    TECHNOLOGIES, 2021, 9 (01)
  • [10] Well-posedness for a general class of differential inclusions
    Trostorff, Sascha
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 6489 - 6516