The application of pso-lssvm in fault diagnosis of subway auxiliary inverter

被引:0
|
作者
机构
[1] [1,Gao, Junwei
[2] 1,Yu, Jinpeng
[3] Leng, Ziwen
[4] Yao, Dechen
[5] Li, Xiaofeng
来源
Gao, J. (gaojw@yahoo.cn) | 1600年 / ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan卷 / 04期
关键词
Energy feature vectors - Fault diagnosis model - Generalization ability - Global search capability - Least squares support vector machines - Non-stationary characteristics - Wavelet Packet - Wavelet packet transforms;
D O I
暂无
中图分类号
学科分类号
摘要
Focused on the non-stationary characteristics of the fault signal of subway auxiliary inverter and the fault diagnostic accuracy problem, this paper establishes the fault diagnosis model on the basis of least squares support vector machine (LSSVM) and particle swarm optimization (PSO). This paper firstly extracts the frequency domain energy feature vector by wavelet packet transform, secondly establishes the multi-fault classification based on LSSVM to achieve the fault pattern recognition, and thirdly optimizes the structure parameters of LSSVM by means of PSO, which enhances the global search capability and avoids the blindness of parameter choice. Experiment results demonstrate that the proposed fault diagnosis model not only achieves better classification effect, but also is superior to traditional LSSVM in diagnostic accuracy and generalization ability, which is applicable to the fault diagnosis of subway auxiliary inverter. © 2013 ISSN 2185-2766.
引用
收藏
相关论文
共 50 条
  • [41] Application of Affinity Propagation Clustering Algorithm in Fault Diagnosis of Metro Vehicle Auxiliary Inverter
    Gao, Junwei
    Ma, Zengtao
    Qin, Yong
    Jia, Limin
    Yao, Dechen
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT2013), VOL II, 2014, 288 : 3 - 9
  • [42] 基于改进PSO-LSSVM的模拟电路诊断方法
    胡天骐
    单剑锋
    宋晓涛
    计算机技术与发展, 2015, 25 (06) : 193 - 196
  • [43] 混沌优化PSO-LSSVM算法的短期负荷预测
    郝晓弘
    刘鹏娟
    汪宁渤
    兰州理工大学学报, 2019, 45 (01) : 85 - 90
  • [44] 基于PSO-LSSVM的双压凝汽器真空建模
    吴伟
    冯林魁
    王平
    赵凯
    机械研究与应用, 2021, 34 (04) : 128 - 130
  • [45] 基于混合核PSO-LSSVM的轧制力预测
    刘承宝
    刘新忠
    苗宇
    冶金自动化, 2016, 40 (02) : 15 - 19+24
  • [46] K/S value prediction of cotton fabric using PSO-LSSVM
    Yu, Chengbing
    Xi, Ziwei
    Lu, Yilin
    Tao, Kaixin
    Yi, Zhong
    TEXTILE RESEARCH JOURNAL, 2020, 90 (23-24) : 2581 - 2591
  • [47] Scanning Micromirror Calibration Method Based on PSO-LSSVM Algorithm Prediction
    Liu, Yan
    Cheng, Xiang
    Zhang, Tingting
    Xu, Yu
    Cai, Weijia
    Han, Fengtian
    Micromachines, 2024, 15 (12)
  • [48] Modeling Inductance for Bearingless Switched Reluctance Motor based on PSO-LSSVM
    Xiang, Qianwen
    Sun, Yakun
    Ji, Xiaofu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 800 - 803
  • [49] Evaluation of concrete compressive strength based on an improved PSO-LSSVM model
    Xue, Xinhua
    COMPUTERS AND CONCRETE, 2018, 21 (05): : 505 - 511
  • [50] 基于PSO-LSSVM的GPS跨河高程拟合研究
    李崇伟
    城市勘测, 2018, (06) : 132 - 134