The application of pso-lssvm in fault diagnosis of subway auxiliary inverter

被引:0
|
作者
机构
[1] [1,Gao, Junwei
[2] 1,Yu, Jinpeng
[3] Leng, Ziwen
[4] Yao, Dechen
[5] Li, Xiaofeng
来源
Gao, J. (gaojw@yahoo.cn) | 1600年 / ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan卷 / 04期
关键词
Energy feature vectors - Fault diagnosis model - Generalization ability - Global search capability - Least squares support vector machines - Non-stationary characteristics - Wavelet Packet - Wavelet packet transforms;
D O I
暂无
中图分类号
学科分类号
摘要
Focused on the non-stationary characteristics of the fault signal of subway auxiliary inverter and the fault diagnostic accuracy problem, this paper establishes the fault diagnosis model on the basis of least squares support vector machine (LSSVM) and particle swarm optimization (PSO). This paper firstly extracts the frequency domain energy feature vector by wavelet packet transform, secondly establishes the multi-fault classification based on LSSVM to achieve the fault pattern recognition, and thirdly optimizes the structure parameters of LSSVM by means of PSO, which enhances the global search capability and avoids the blindness of parameter choice. Experiment results demonstrate that the proposed fault diagnosis model not only achieves better classification effect, but also is superior to traditional LSSVM in diagnostic accuracy and generalization ability, which is applicable to the fault diagnosis of subway auxiliary inverter. © 2013 ISSN 2185-2766.
引用
收藏
相关论文
共 50 条
  • [21] PSO-LSSVM Improves the Accuracy of LIBS Quantitative Analysis
    Lin Xiao-mei
    Wang Xiao-meng
    Huang Yu-tao
    Lin Jing-jun
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (11) : 3583 - 3587
  • [22] Local Demagnetization Fault Recognition of Permanent Magnet Synchronous Linear Motor Based on PSO-LSSVM
    Song X.
    Zhao J.
    Dong F.
    Song J.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (08): : 2426 - 2435
  • [23] Predicting characteristics of dune bedforms using PSO-LSSVM
    Kiyoumars Roushangar
    Seyed Mahdi Saghebian
    Dominique Mouaze
    InternationalJournalofSedimentResearch, 2017, 32 (04) : 515 - 526
  • [24] 基于PSO-LSSVM的GNSS高程拟合
    朱华
    测绘标准化, 2023, 39 (01) : 79 - 82
  • [25] 土体残余强度的PSO-LSSVM模型
    周学君
    陈丁
    唐轶
    数学建模及其应用, 2017, 6 (01) : 28 - 34
  • [26] PSO-LSSVM的电力负荷预测研究
    朱玲明
    王志坤
    科技广场, 2014, (02) : 11 - 15
  • [27] 基于PSO-LSSVM的供热负荷预测研究
    赵秉文
    李婉
    金宇
    建筑节能(中英文), 2021, 49 (06) : 46 - 49+78
  • [28] 基于PSO-LSSVM的过电压识别
    马世欢
    鲁华栋
    电子器件, 2017, 40 (03) : 722 - 726
  • [29] 基于PSO-LSSVM的短期电力负荷预测
    黎津池
    四川电力技术, 2016, 39 (02) : 6 - 9+68
  • [30] Non-linear AVO inversion based on PSO-LSSVM
    Xie W.
    Wang Y.
    Liu J.
    Su J.
    Mao Q.
    He R.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2016, 51 (06): : 1187 - 1194