Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model

被引:0
|
作者
Nguyen, Ngoc-Kim-Khanh [1 ]
Nguyen, Quang [2 ,3 ,4 ]
Pham, Hai-Ha [5 ]
Le, Thi-Trang [4 ]
Nguyen, Tuan-Minh [4 ]
Cassi, Davide [6 ,7 ]
Scotognella, Francesco [8 ,9 ]
Alfieri, Roberto [6 ,7 ]
Bellingeri, Michele [6 ,7 ,8 ]
机构
[1] Faculty of Basic Science, Van Lang University, Ho Chi Minh, Viet Nam
[2] Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh,700000, Viet Nam
[3] Faculty of Natural Sciences, Duy Tan University, Da Nang,550000, Viet Nam
[4] John von Neumann Institute, Vietnam National University Ho Chi Minh City, Ho Chi Minh, Viet Nam
[5] Vietnam National University, International University, Department of Mathematics, Thu Duc, Ho Chi Minh, Viet Nam
[6] Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area Delle Scienze 7/A 43124, Parma, Italy
[7] Infn, Gruppo Collegato di Parma, Parma,I-43124, Italy
[8] Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
[9] Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, Milan,20133, Italy
关键词
Multiple linear regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Predicting Blood Concentration of Tacrolimus in Patients With Autoimmune Diseases Using Machine Learning Techniques Based on Real-World Evidence
    Zheng, Ping
    Yu, Ze
    Li, Liren
    Liu, Shiting
    Lou, Yan
    Hao, Xin
    Yu, Peng
    Lei, Ming
    Qi, Qiaona
    Wang, Zeyuan
    Gao, Fei
    Zhang, Yuqing
    Li, Yilei
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [42] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Pivneva, Irina
    Balp, Maria-Magdalena
    Geissbuhler, Yvonne
    Severin, Thomas
    Smeets, Serge
    Signorovitch, James
    Royer, Jimmy
    Liang, Yawen
    Cornwall, Tom
    Pan, Jutong
    Danyliv, Andrii
    McKenna, Sarah Jane
    Marsland, Alexander M.
    Soong, Weily
    DERMATOLOGY AND THERAPY, 2022, 12 (12) : 2747 - 2763
  • [43] Towards Machine Learning with Zero Real-World Data
    Kang, Cholmin
    Jung, Hyunwoo
    Lee, Youngki
    WEARSYS'19: PROCEEDINGS OF THE 5TH ACM WORKSHOP ON WEARABLE SYSTEMS AND APPLICATIONS, 2019, : 41 - 46
  • [44] Real-World Evidence, Causal Inference, and Machine Learning
    Crown, William H.
    VALUE IN HEALTH, 2019, 22 (05) : 587 - 592
  • [45] A Review of Machine Learning Classification Using Quantum Annealing for Real-World Applications
    Nath R.K.
    Thapliyal H.
    Humble T.S.
    SN Computer Science, 2021, 2 (5)
  • [46] Using machine learning on real-world data to predict metastatic status.
    Green, Foad H.
    Huang, Hu T.
    Lerman, Michelle
    Tran, Mary
    Subramanian, Vinod
    Loving, Joshua
    Rioth, Matthew J.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [47] Community detection in a large real-world social network
    Steinhaeuser, Karsten
    Chawla, Nitesh V.
    SOCIAL COMPUTING, BEHAVIORAL MODELING AND PREDICTION, 2008, : 168 - 175
  • [48] Model-Agnostic Machine Learning Model Updating - A Case Study on a real-world Application
    Poray, Julia
    Franczyk, Bogdan
    Heller, Thomas
    2024 19TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS, FEDCSIS 2024, 2024, : 157 - 167
  • [49] Real-World Evidence: Integrating Machine Learning with Real-World Big Data for Predictive Analytics in Healthcare
    Vecchio, Nicolas
    CARDIOLOGY, 2024,
  • [50] Influence Maximization in Real-World Closed Social Networks
    Huang, Shixun
    Lin, Wenqing
    Bao, Zhifeng
    Sun, Jiachen
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 16 (02): : 180 - 192