Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model

被引:0
|
作者
Nguyen, Ngoc-Kim-Khanh [1 ]
Nguyen, Quang [2 ,3 ,4 ]
Pham, Hai-Ha [5 ]
Le, Thi-Trang [4 ]
Nguyen, Tuan-Minh [4 ]
Cassi, Davide [6 ,7 ]
Scotognella, Francesco [8 ,9 ]
Alfieri, Roberto [6 ,7 ]
Bellingeri, Michele [6 ,7 ,8 ]
机构
[1] Faculty of Basic Science, Van Lang University, Ho Chi Minh, Viet Nam
[2] Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh,700000, Viet Nam
[3] Faculty of Natural Sciences, Duy Tan University, Da Nang,550000, Viet Nam
[4] John von Neumann Institute, Vietnam National University Ho Chi Minh City, Ho Chi Minh, Viet Nam
[5] Vietnam National University, International University, Department of Mathematics, Thu Duc, Ho Chi Minh, Viet Nam
[6] Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area Delle Scienze 7/A 43124, Parma, Italy
[7] Infn, Gruppo Collegato di Parma, Parma,I-43124, Italy
[8] Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
[9] Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, Milan,20133, Italy
关键词
Multiple linear regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A machine learning model for predicting blood concentration of quetiapine in patients with schizophrenia and depression based on real-world data
    Hao, Yupei
    Zhang, Jinyuan
    Yang, Lin
    Zhou, Chunhua
    Yu, Ze
    Gao, Fei
    Hao, Xin
    Pang, Xiaolu
    Yu, Jing
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2023, 89 (09) : 2714 - 2725
  • [22] Unifying Gradients to Improve Real-World Robustness for Deep Networks
    Wu, Yingwen
    Chen, Sizhe
    Fang, Kun
    Huang, Xiaolin
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (06)
  • [23] Improving risk stratification of recurrent myocardial infarction in a large real-world dataset using machine learning
    Chodick, G.
    Vered, Z.
    Elgui, K.
    Mathieu, T.
    Trichelair, P.
    Zachlederova, M.
    Rousset, A.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [24] Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning
    Wang, Yujia
    Yu, Haoran
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9, 2024, : 9926 - 9934
  • [25] machine learning applications using real-world data: A literature review
    Adair, Nicholas
    Icten, Zeynep
    Friedman, Mark
    Menzin, Joseph
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2020, 29 : 339 - 339
  • [26] Real-World Guidance from Artificial Intelligence? Predicting Outcomes of Inflammatory Bowel Disease Using Machine Learning
    Danny Con
    Abhinav Vasudevan
    Digestive Diseases and Sciences, 2022, 67 : 4604 - 4605
  • [27] Predicting recurrence of venous thromboembolism in anticoagulated cancer patients using real-world data and machine learning.
    Martin, Andres J. Munoz
    Dominguez, Sofia Huerga
    Souto, Juan Carlos
    Revuelta, Jacobo Rogado
    Sanchez, Antonio
    Garcia-Palomo, Andres
    Aparicio, Jorge
    Aguayo, Cristina
    Abad, David Gutierrez
    Ortega, Laura
    Vinuela-Beneitez, Maria Carmen
    Fanjul, Victor
    Casadevall, David
    Arumi, Daniel
    Hernandez-Presa, Miguel Angel
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16) : E18742 - E18742
  • [28] Real-World Guidance from Artificial Intelligence? Predicting Outcomes of Inflammatory Bowel Disease Using Machine Learning
    Con, Danny
    Vasudevan, Abhinav
    DIGESTIVE DISEASES AND SCIENCES, 2022, 67 (10) : 4604 - 4605
  • [29] Predicting plasma concentration of quetiapine in patients with depression using machine learning techniques based on real-world evidence
    Yang, Lin
    Zhang, Jinyuan
    Yu, Jing
    Yu, Ze
    Hao, Xin
    Gao, Fei
    Zhou, Chunhua
    EXPERT REVIEW OF CLINICAL PHARMACOLOGY, 2023, 16 (08) : 741 - 750
  • [30] Discovering Motifs in Real-World Social Networks
    Romijn, Lotte
    Nuallain, Breanndan O.
    Torenvliet, Leen
    SOFSEM 2015: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2015, 8939 : 463 - 474