Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model

被引:0
|
作者
Nguyen, Ngoc-Kim-Khanh [1 ]
Nguyen, Quang [2 ,3 ,4 ]
Pham, Hai-Ha [5 ]
Le, Thi-Trang [4 ]
Nguyen, Tuan-Minh [4 ]
Cassi, Davide [6 ,7 ]
Scotognella, Francesco [8 ,9 ]
Alfieri, Roberto [6 ,7 ]
Bellingeri, Michele [6 ,7 ,8 ]
机构
[1] Faculty of Basic Science, Van Lang University, Ho Chi Minh, Viet Nam
[2] Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh,700000, Viet Nam
[3] Faculty of Natural Sciences, Duy Tan University, Da Nang,550000, Viet Nam
[4] John von Neumann Institute, Vietnam National University Ho Chi Minh City, Ho Chi Minh, Viet Nam
[5] Vietnam National University, International University, Department of Mathematics, Thu Duc, Ho Chi Minh, Viet Nam
[6] Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area Delle Scienze 7/A 43124, Parma, Italy
[7] Infn, Gruppo Collegato di Parma, Parma,I-43124, Italy
[8] Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano,20133, Italy
[9] Center for Nano Science and Technology PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli 70/3, Milan,20133, Italy
关键词
Multiple linear regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model
    Nguyen, Ngoc-Kim-Khanh
    Nguyen, Quang
    Pham, Hai-Ha
    Le, Thi-Trang
    Nguyen, Tuan-Minh
    Cassi, Davide
    Scotognella, Francesco
    Alfieri, Roberto
    Bellingeri, Michele
    COMPLEXITY, 2022, 2022
  • [2] Predicting the Robustness of Large Real-World Social Networks Using a Machine Learning Model
    Nguyen, Ngoc-Kim-Khanh
    Nguyen, Quang
    Pham, Hai-Ha
    Le, Thi-Trang
    Nguyen, Tuan-Minh
    Cassi, Davide
    Scotognella, Francesco
    Alfieri, Roberto
    Bellingeri, Michele
    COMPLEXITY, 2022, 2022
  • [3] Predicting the Robustness of Real-World Complex Networks
    Wu, Ruizi
    Huang, Jie
    Yu, Zhuoran
    Li, Junli
    IEEE ACCESS, 2022, 10 : 94376 - 94387
  • [4] A study of real-world micrograph data quality and machine learning model robustness
    Zhong, Xiaoting
    Gallagher, Brian
    Eves, Keenan
    Robertson, Emily
    Mundhenk, T. Nathan
    Han, T. Yong-Jin
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [5] A study of real-world micrograph data quality and machine learning model robustness
    Xiaoting Zhong
    Brian Gallagher
    Keenan Eves
    Emily Robertson
    T. Nathan Mundhenk
    T. Yong-Jin Han
    npj Computational Materials, 7
  • [6] Predicting real-world response to mepolizumab in severe asthma using machine learning
    Usuba, Koyo
    Zhang, Lingjiao
    Liu, Xinyang
    Han, Tim
    Nightingale, Natalie
    Tehrani, Ali
    Zhang, Shiyuan
    Howarth, Peter
    Alfonso-Cristancho, Rafael
    EUROPEAN RESPIRATORY JOURNAL, 2024, 64
  • [7] Meaningful Machine Learning Robustness Evaluation in Real-World Machine Learning Enabled System Contexts
    Hiett, Ben
    Boyd, Peter
    Fletcher, Charles
    Gowland, Sam
    Sharp, James H.
    Sloggett, David
    Banks, Alec
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS IV, 2022, 12276
  • [8] Learning in Networks: An Experiment on Large Networks with Real-World Features
    Choi, Syngjoo
    Goyal, Sanjeev
    Moisan, Frederic
    To, Yu Yang Tony
    MANAGEMENT SCIENCE, 2023, 69 (05) : 2778 - 2787
  • [9] Improving the Performance of Opportunistic Networks in Real-World Applications Using Machine Learning Techniques
    Rashidibajgan, Samaneh
    Hupperich, Thomas
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2022, 11 (04)
  • [10] Predicting Wilson disease progression using machine learning with real-world electronic health records
    Liang, Caihua
    Kelly, Scott
    Shen, Rongjun
    Li, Ling
    Lobello, Kasia
    Arkin, Steven
    Huang, Kui
    Zhou, Xiaofeng
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 63 - 64