g-C3N4 integrated silicon nanoparticle composite for high-performance Li-ion battery anodes

被引:0
|
作者
Zhong, Yi [1 ]
Yu, Bicheng [1 ]
Xu, Lanqing [2 ]
Huang, Yajing [1 ]
Zheng, Yongping [1 ]
Li, Jiaxin [1 ]
Huang, Zhigao [1 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350007, Fujian, Peoples R China
[2] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350007, Fujian, Peoples R China
关键词
NANOFIBER COMPOSITES; CARBON NANOFIBERS; GRAPHITIC CARBON; SI NANOPARTICLES; GRAPHENE; ELECTRODE; CAPACITY; DESIGN; NI;
D O I
10.1007/s10853-024-10326-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon anodes for Li-ion batteries face challenges due to substantial volume changes and low electrical conductivity. To address these issues comprehensively, we employed electrospinning technology to integrate nitrogen-rich graphitic carbon nitride (g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document}) with graphene-like structure into carbon nanofibers (CNFs), using melamine as a precursor. This approach resulted in a hierarchical Si@g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document}/CNF composite anode that mitigates volume expansion and enhances electrical conductivity through continuous g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document} layers surrounding Si nanoparticles, improving structural porosity, lithium-ion storage capacity, and cycling stability. Under a high current of 1A g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g<^>{-1}$$\end{document}, it exhibits a high reversible capacity and excellent cyclic stability. To further understand and optimize this composite material, we conducted ab initio molecular dynamics simulations to probe the structural and dynamical properties during lithiation. The results revealed that g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document} significantly enhances capacity and stability by minimizing side reactions, suppressing irreversible capacity loss via SEI film growth regulation, and improving interfacial electrochemical reaction kinetics. Moreover, we introduced cobalt nanoparticles into the composite structure, which effectively suppressed side reactions, facilitated lithium-ion diffusion, and thereby enhanced overall electrochemical performance. Even under a substantial current of 2A g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g<^>{-1}$$\end{document}, both the specific capacity and cycle life have been significantly enhanced. The combination of these strategies enables silicon anodes with ultra-long-cycling stability, paving the way for practical applications in high-energy lithium-ion batteries.
引用
收藏
页码:19915 / 19933
页数:19
相关论文
共 50 条
  • [1] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS NANO, 2022, 16 (09) : 13704 - 13714
  • [2] Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes
    Dubey, Romain J-C
    Sasikumar, Pradeep Vallachira Warriam
    Cerboni, Noemi
    Aebli, Marcel
    Krumeich, Frank
    Blugan, Gurdial
    Kravchyk, Kostiantyn, V
    Graule, Thomas
    Kovalenko, Maksym, V
    NANOSCALE, 2020, 12 (25) : 13540 - 13547
  • [3] Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes
    Chen, Xilin
    Li, Xiaolin
    Ding, Fei
    Xu, Wu
    Xiao, Jie
    Cao, Yuliang
    Meduri, Praveen
    Liu, Jun
    Graff, Gordon L.
    Zhang, Ji-Guang
    NANO LETTERS, 2012, 12 (08) : 4124 - 4130
  • [4] Amorphized Sb-based composite for high-performance Li-ion battery anodes
    Sung, Ji Hyun
    Park, Cheol-Min
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 700 : 12 - 16
  • [5] Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes
    Zhu, Sijia
    Lin, Yangfan
    Yan, Zhilin
    Jiang, Jingwei
    Yang, Deren
    Du, Ning
    ELECTROCHIMICA ACTA, 2021, 377
  • [6] Amorphous silicon dioxide-based composites for high-performance Li-ion battery anodes
    Lee, Seung-Su
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2018, 284 : 220 - 225
  • [7] High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies
    Kim, Nahyeon
    Oh, Changil
    Kim, Jaegyeong
    Kim, Jeom-Soo
    Jeong, Euh Duck
    Bae, Jong-Seong
    Hong, Tae Eun
    Lee, Jung Kyoo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) : A6075 - A6083
  • [8] A novel mesoporous carbon@silicon-silica nanostructure for high-performance Li-ion battery anodes
    He, Qianjun
    Xu, Chaohe
    Luo, Jianqiang
    Wu, Wei
    Shi, Jianlin
    CHEMICAL COMMUNICATIONS, 2014, 50 (90) : 13944 - 13947
  • [9] Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes
    Lee, Seung-Su
    Nam, Ki-Hun
    Jung, Heechul
    Park, Cheol-Min
    CHEMICAL ENGINEERING JOURNAL, 2020, 381
  • [10] Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes
    Sun, Lin
    Su, Tingting
    Xu, Lei
    Du, Hong-Bin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (03) : 1521 - 1525