Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes

被引:54
|
作者
Sun, Lin [1 ]
Su, Tingting [1 ]
Xu, Lei [1 ]
Du, Hong-Bin [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Collaborat Innovat Ctr Chem Life Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MESOPOROUS SILICON; SCALABLE SYNTHESIS; NANO-SILICON; LITHIUM; POLYPYRROLE; NANOSPHERES; LITHIATION; NANOSHEETS; REDUCTION; STORAGE;
D O I
10.1039/c5cp06585b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured silicon has attracted a great deal of attention as an excellent anode material for Li ion batteries (LIBs). However, the use of Si nanomaterials in LIBs is severely hindered by their preparative methods owing to the high cost, low yield, and harsh synthetic conditions. Herein, we report a new method for the synthesis of uniform Si nanocrystals based on the magnesiothermic reduction of natural attapulgite clay. The obtained Si nanocrystals with a uniform size of ca. 10 nm are coated with polypyrrole (denoted ppy@Si) and show excellent electrochemical performance as anode materials for LIBs. After charging-discharging for 200 cycles at a current density of 0.6 A g(-1), the specific capacity value of the ppy@Si anode is similar to 954 mA h g(-1). Because of the abundance of attapulgite, the obtained silicon nanoparticles can be exploited as a practical anode material for high-performance Li-ion batteries.
引用
收藏
页码:1521 / 1525
页数:5
相关论文
共 50 条
  • [1] Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes
    Zhu, Sijia
    Lin, Yangfan
    Yan, Zhilin
    Jiang, Jingwei
    Yang, Deren
    Du, Ning
    [J]. ELECTROCHIMICA ACTA, 2021, 377
  • [2] Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes
    Wang, Lei
    Gao, Biao
    Peng, Changjian
    Peng, Xiang
    Fu, Jijiang
    Chu, Paul K.
    Huo, Kaifu
    [J]. NANOSCALE, 2015, 7 (33) : 13840 - 13847
  • [3] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    [J]. ACS NANO, 2022, 16 (09) : 13704 - 13714
  • [4] Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes
    Wang, Jing
    Meng, Xiangcai
    Fan, Xiulin
    Zhang, Wenbo
    Zhang, Hongyong
    Wang, Chunsheng
    [J]. ACS NANO, 2015, 9 (06) : 6576 - 6586
  • [5] Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes
    Lee, Seung-Su
    Nam, Ki-Hun
    Jung, Heechul
    Park, Cheol-Min
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 381
  • [6] Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes
    Yu, Yongli
    Li, Gang
    Zhou, Shuai
    Chen, Xu
    Lee, Hyun-Wook
    Yang, Wensheng
    [J]. CARBON, 2017, 120 : 397 - 404
  • [7] DNA metallization for high performance Li-ion battery anodes
    Kim, Dong Jun
    Woo, Min-Ah
    Jung, Ye Lim
    Bharathi, K. Kamala
    Park, Hyun Gyu
    Kim, Do Kyung
    Choi, Jang Wook
    [J]. NANO ENERGY, 2014, 8 : 17 - 24
  • [8] Co-Ge compounds and their electrochemical performance as high-performance Li-ion battery anodes
    Kim, Do-Hyeon
    Park, Cheol-Min
    [J]. MATERIALS TODAY ENERGY, 2020, 18
  • [9] Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes
    Dubey, Romain J-C
    Sasikumar, Pradeep Vallachira Warriam
    Cerboni, Noemi
    Aebli, Marcel
    Krumeich, Frank
    Blugan, Gurdial
    Kravchyk, Kostiantyn, V
    Graule, Thomas
    Kovalenko, Maksym, V
    [J]. NANOSCALE, 2020, 12 (25) : 13540 - 13547
  • [10] Amorphized Sb-based composite for high-performance Li-ion battery anodes
    Sung, Ji Hyun
    Park, Cheol-Min
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 700 : 12 - 16