g-C3N4 integrated silicon nanoparticle composite for high-performance Li-ion battery anodes

被引:0
|
作者
Zhong, Yi [1 ]
Yu, Bicheng [1 ]
Xu, Lanqing [2 ]
Huang, Yajing [1 ]
Zheng, Yongping [1 ]
Li, Jiaxin [1 ]
Huang, Zhigao [1 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350007, Fujian, Peoples R China
[2] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350007, Fujian, Peoples R China
关键词
NANOFIBER COMPOSITES; CARBON NANOFIBERS; GRAPHITIC CARBON; SI NANOPARTICLES; GRAPHENE; ELECTRODE; CAPACITY; DESIGN; NI;
D O I
10.1007/s10853-024-10326-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon anodes for Li-ion batteries face challenges due to substantial volume changes and low electrical conductivity. To address these issues comprehensively, we employed electrospinning technology to integrate nitrogen-rich graphitic carbon nitride (g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document}) with graphene-like structure into carbon nanofibers (CNFs), using melamine as a precursor. This approach resulted in a hierarchical Si@g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document}/CNF composite anode that mitigates volume expansion and enhances electrical conductivity through continuous g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document} layers surrounding Si nanoparticles, improving structural porosity, lithium-ion storage capacity, and cycling stability. Under a high current of 1A g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g<^>{-1}$$\end{document}, it exhibits a high reversible capacity and excellent cyclic stability. To further understand and optimize this composite material, we conducted ab initio molecular dynamics simulations to probe the structural and dynamical properties during lithiation. The results revealed that g-C3N4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {C}_3\hbox {N}_4}$$\end{document} significantly enhances capacity and stability by minimizing side reactions, suppressing irreversible capacity loss via SEI film growth regulation, and improving interfacial electrochemical reaction kinetics. Moreover, we introduced cobalt nanoparticles into the composite structure, which effectively suppressed side reactions, facilitated lithium-ion diffusion, and thereby enhanced overall electrochemical performance. Even under a substantial current of 2A g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g<^>{-1}$$\end{document}, both the specific capacity and cycle life have been significantly enhanced. The combination of these strategies enables silicon anodes with ultra-long-cycling stability, paving the way for practical applications in high-energy lithium-ion batteries.
引用
收藏
页码:19915 / 19933
页数:19
相关论文
共 50 条
  • [21] Nanowires for high-performance Li-ion battery electrodes
    McDowell, Matthew T.
    Cui, Yi
    RSC Smart Materials, 2015, 2015-January (11): : 363 - 399
  • [22] Ag nanoparticle modified porous Si microspheres as high-performance anodes for Li-ion batteries
    Pan, Wenhao
    Yang, Changjiang
    Zhou, Lei
    Cai, Xiaolan
    Wang, Yankun
    Tan, Junhao
    Chang, Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (46) : 31754 - 31769
  • [23] Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes
    Wang, Jing
    Meng, Xiangcai
    Fan, Xiulin
    Zhang, Wenbo
    Zhang, Hongyong
    Wang, Chunsheng
    ACS NANO, 2015, 9 (06) : 6576 - 6586
  • [24] Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes
    Liu, Borui
    Soares, Paulo
    Checkles, Constantine
    Zhao, Yu
    Yu, Guihua
    NANO LETTERS, 2013, 13 (07) : 3414 - 3419
  • [25] Intentional surface oxidation of silicon nanoparticles for improved Li-ion battery composite anodes
    Carroll, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes
    Wang, Lei
    Gao, Biao
    Peng, Changjian
    Peng, Xiang
    Fu, Jijiang
    Chu, Paul K.
    Huo, Kaifu
    NANOSCALE, 2015, 7 (33) : 13840 - 13847
  • [27] Facile Fabrication of High-Performance Li-Ion Battery Carbonaceous Anode from Li-Ion Battery Waste
    Li, Zheng
    Li, Songxian
    Wang, Tao
    Yang, Kai
    Zhou, Yangen
    Tian, Zhongliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [28] A mesoporous WO3-X/graphene composite as a high-performance Li-ion battery anode
    Liu, Fei
    Kim, Jong Gu
    Lee, Chul Wee
    Im, Ji Sun
    APPLIED SURFACE SCIENCE, 2014, 316 : 604 - 609
  • [29] A simple and green self-conversion method to construct silicon hollow spheres for high-performance Li-ion battery anodes
    Wang, Fei
    Wang, Bo
    Yu, Zhongliang
    Lv, Qiang
    Jin, Fan
    Bao, Changyuan
    Wang, Dianlong
    ELECTROCHIMICA ACTA, 2023, 443
  • [30] SnTe-TiC-C composites as high-performance anodes for Li-ion batteries
    Son, Seung Yeon
    Hur, Jaehyun
    Kim, Kwang Ho
    Son, Hyung Bin
    Lee, Seung Geol
    Kim, Il Tae
    JOURNAL OF POWER SOURCES, 2017, 365 : 372 - 379