Optimal design of convolutional neural network for EEG -based authentication

被引:0
|
作者
Lee H. [1 ]
Kim G. [1 ]
Kim J. [2 ]
Kang Y. [2 ]
Park C. [2 ]
机构
[1] Department of Software, Kwangwoon University, Seoul
[2] Department of Computer Engineering, Kwangwoon University /, Seoul
关键词
Authentication; Bayesian optimization; Deep learning; EEG;
D O I
10.5573/IEIESPC.2021.10.3.199
中图分类号
学科分类号
摘要
An electroencephalogram (EEG) is an electrical recording from the scalp when neurons in the brain are active. EEG signals have been studied for authentication because they are difficult to falsify and can distinguish individuals. On the other hand, EEG is nonstationary, and its patterns vary slightly. The authentication model was trained day-to-day to overcome the nonstationarity of EEG. EEG signals were measured on two-channel frontal electrodes for five days from 10 subjects in their resting states. Convolutional neural networks were designed for an EEG-based authentication system, and the model was optimized using a Bayesian optimization method. The proposed neural network model was trained with the EEG data from the first to the fourth day and tested using the fifth-day data, which yielded a mean accuracy of 93.23%, precision of 71.31%, and recall of 57.65%. The incremental learning of the EEG signals day-to-day improves the authentication performance, including various EEG patterns in the model. © 2021 Institute of Electronics and Information Engineers. All rights reserved.
引用
收藏
页码:199 / 203
页数:4
相关论文
共 50 条
  • [21] Product color emotional design based on a convolutional neural network and search neural network
    Ding, Man
    Cheng, Yu
    Zhang, Jinyong
    Du, Guanyi
    COLOR RESEARCH AND APPLICATION, 2021, 46 (06): : 1332 - 1346
  • [22] EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network
    Yan, Jianzhuo
    Li, Jinnan
    Xu, Hongxia
    Yu, Yongchuan
    Pan, Lexin
    Cheng, Xuerui
    Tan, Shaofeng
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 463 - 473
  • [23] A lightweight convolutional transformer neural network for EEG-based depression recognition
    Hou, Pengfei
    Li, Xiaowei
    Zhu, Jing
    Hu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [24] A Riemannian Convolutional Neural Network for EEG-based motor imagery decoding
    Li, Changchun
    Gu, Zhenghui
    Neurocomputing, 2025, 639
  • [25] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Swati Rajwal
    Swati Aggarwal
    Archives of Computational Methods in Engineering, 2023, 30 : 3585 - 3615
  • [26] Convolutional neural network framework for EEG-based ADHD diagnosis in children
    Hassan, Umaisa
    Singhal, Amit
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01):
  • [27] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352
  • [28] Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review
    Rajwal, Swati
    Aggarwal, Swati
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (06) : 3585 - 3615
  • [29] EEG-based Classification of Drivers Attention using Convolutional Neural Network
    Atilla, Fred
    Alimardani, Maryam
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2021, : 59 - 62
  • [30] Scalp EEG-Based Pain Detection Using Convolutional Neural Network
    Chen, Duo
    Zhang, Haihong
    Kavitha, Perumpadappil Thomas
    Loy, Fong Ling
    Ng, Soon Huat
    Wang, Chuanchu
    Phua, Kok Soon
    Tjan, Soon Yin
    Yang, Su-Yin
    Guan, Cuntai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 274 - 285