Comparative evaluation of α-Bi2O3/CoFe2O4 and ZnO/CoFe2O4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline

被引:0
|
作者
Bose, Saptarshi [1 ]
Kumar, Mathava [1 ]
机构
[1] Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai,600036, India
关键词
Bismuth compounds;
D O I
10.1016/j.chemosphere.2024.143071
中图分类号
学科分类号
摘要
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2−) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2− but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, ‘hotspots’ were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2− and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Comparative study of structural, magnetic and dielectric properties of CoFe2O4 @ BiFeO3 and BiFeO3 @ CoFe2O4 core-shell nanocomposites
    Sheoran, Nidhi
    Kumar, Vinod
    Kumar, Ashok
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 475 : 30 - 37
  • [32] Efficient CoFe2O4/CeO2 nanocomposites for photocatalytic dye degradation
    Ashok Sonia
    Parmod Kumar
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [33] Efficient CoFe2O4/CeO2 nanocomposites for photocatalytic dye degradation
    Sonia
    Kumar, Ashok
    Kumar, Parmod
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (27)
  • [34] Preparation and characterization of CoFe2O4/SiO2 nanocomposites
    Huang Xianghui
    Chen Zhenhua
    CHINESE SCIENCE BULLETIN, 2006, 51 (20): : 2529 - 2534
  • [35] Structural study of CoFe2/CoFe2O4 multilayers
    Jurca, IS
    Viart, N
    Mény, C
    Ulhaq-Bouillet, C
    Panissod, P
    Pourroy, G
    SURFACE SCIENCE, 2003, 529 (1-2) : 215 - 222
  • [36] Multifunctional CoFe2O4/ZnO nanocomposites: probing magnetic and photocatalytic properties
    Sonia
    Kumar, Parmod
    Kumar, Ashok
    NANOTECHNOLOGY, 2024, 35 (14)
  • [37] Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B
    Tabit, Rida
    Amadine, Othmane
    Essamlali, Younes
    Danoun, Karim
    Rhihil, Abdallah
    Zahouily, Mohamed
    RSC ADVANCES, 2018, 8 (03): : 1351 - 1360
  • [38] Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions
    Rahimi, Z.
    Sarafraz, H.
    Alahyarizadeh, Gh.
    Shirani, A. S.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2018, 317 (01) : 431 - 442
  • [39] Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions
    Z. Rahimi
    H. Sarafraz
    Gh. Alahyarizadeh
    A. S. Shirani
    Journal of Radioanalytical and Nuclear Chemistry, 2018, 317 : 431 - 442
  • [40] Magnetic and photocatalytic properties of CoFe2O4/Ni nanocomposites
    Mahdikhah, V
    Ataie, A.
    Moayyer, H. Akbari
    Molaei, Mohammad Jafar
    Babaei, A.
    JOURNAL OF ELECTROCERAMICS, 2022, 48 (01) : 51 - 66