Comparative evaluation of α-Bi2O3/CoFe2O4 and ZnO/CoFe2O4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline

被引:0
|
作者
Bose, Saptarshi [1 ]
Kumar, Mathava [1 ]
机构
[1] Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai,600036, India
关键词
Bismuth compounds;
D O I
10.1016/j.chemosphere.2024.143071
中图分类号
学科分类号
摘要
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2−) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2− but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, ‘hotspots’ were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2− and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Effect of CoFe2O4 content on the dielectric and magnetoelectric properties in Pb(ZrTi)O3/CoFe2O4 composite
    S. G. Lu
    Z. K. Xu
    Y. P. Wang
    S. S. Guo
    Haydn Chen
    T. L. Li
    S. W. Or
    Journal of Electroceramics, 2008, 21 : 398 - 400
  • [22] Phase formation and magnetic properties of CoFe2O4/CoFe2 nanocomposites
    Kahnes, Marcel
    Mueller, Robert
    Toepfer, Joerg
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 227 : 83 - 89
  • [23] CATION DISTRIBUTION IN COFE2O4
    RIECK, GD
    THIJSSEN, JJ
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1968, B 24 : 982 - &
  • [24] Magnetic Properties and Local Configurations of 57Fe Atoms in CoFe2O4 Powders and CoFe2O4/PVA Nanocomposites
    Fedotova, Yu A.
    Baev, V. G.
    Lesnikovich, A. I.
    Milevich, I. A.
    Vorob'eva, S. A.
    PHYSICS OF THE SOLID STATE, 2011, 53 (04) : 694 - 700
  • [25] Magnetic properties and local configurations of 57Fe atoms in CoFe2O4 powders and CoFe2O4/PVA nanocomposites
    Yu. A. Fedotova
    V. G. Baev
    A. I. Lesnikovich
    I. A. Milevich
    S. A. Vorob’eva
    Physics of the Solid State, 2011, 53 : 694 - 700
  • [26] Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles
    Dmytro Polishchuk
    Natalia Nedelko
    Sergii Solopan
    Anna Ślawska-Waniewska
    Vladyslav Zamorskyi
    Alexandr Tovstolytkin
    Anatolii Belous
    Nanoscale Research Letters, 2018, 13
  • [27] CoFe2O4 and CoFe2O4/SiO2 Core/Shell Nanoparticles: Magnetic and Spectroscopic Study
    Cannas, Carla
    Musinu, Anna
    Ardu, Andrea
    Orru, Federica
    Peddis, Davide
    Casu, Mariano
    Sanna, Roberta
    Angius, Fabrizio
    Diaz, Giacomo
    Piccaluga, Giorgio
    CHEMISTRY OF MATERIALS, 2010, 22 (11) : 3353 - 3361
  • [28] Sandwich CoFe2O4/RGO/CoFe2O4 Nanostructures for High-Performance Electromagnetic Absorption
    Zhang, Kun
    Li, Junjian
    Wu, Fan
    Sun, Mengxiao
    Xia, Yilu
    Xie, Aming
    ACS APPLIED NANO MATERIALS, 2019, 2 (01): : 315 - 324
  • [29] Exchange bias and exchange spring in CoFe2O4/FeO/CoFe nanocomposites
    Tan, Shan-Shan
    Wang, Nan
    Yang, Chao-Qun
    Wang, Li
    Hu, Yue
    Li, Ji
    Xu, Shi-Chong
    Lu, Ming
    Li, Hai-Bo
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 556
  • [30] Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles
    Polishchuk, Dmytro
    Nedelko, Natalia
    Solopan, Sergii
    Slawska-Waniewska, Anna
    Zamorskyi, Vladyslav
    Tovstolytkin, Alexandr
    Belous, Anatolii
    NANOSCALE RESEARCH LETTERS, 2018, 13