Comparative evaluation of α-Bi2O3/CoFe2O4 and ZnO/CoFe2O4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline

被引:0
|
作者
Bose, Saptarshi [1 ]
Kumar, Mathava [1 ]
机构
[1] Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai,600036, India
关键词
Bismuth compounds;
D O I
10.1016/j.chemosphere.2024.143071
中图分类号
学科分类号
摘要
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2−) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2− but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, ‘hotspots’ were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2− and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants
    Ferdosi, E.
    Bahiraei, H.
    Ghanbari, D.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 211 : 35 - 39
  • [2] Temperature dependence of superparamagnetism in CoFe2O4 nanoparticles and CoFe2O4/SiO2 nanocomposites
    Blanco-Gutierrez, V.
    Climent-Pascual, E.
    Saez-Puche, R.
    Torralvo-Fernandez, Maria J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (13) : 9186 - 9193
  • [3] Magnetically Induced Enhanced Exchange Spring Effect in CoFe2O4/CoFe2/CoFe2O4 Films
    Negusse, Ezana
    Williams, Conrad M.
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (07)
  • [4] Structural and Magnetic Studies of CoFe2O4 Ferrite, CoFe2O4/CoFe2 Nanocomposites and CoFe2 Nano-alloy
    I. P. Ezekiel
    T. Moyo
    J. Z. Msomi
    H. M. I. Abdallah
    Journal of Superconductivity and Novel Magnetism, 2017, 30 : 2371 - 2374
  • [5] Structural and Magnetic Studies of CoFe2O4 Ferrite, CoFe2O4/CoFe2 Nanocomposites and CoFe2 Nano-alloy
    Ezekiel, I. P.
    Moyo, T.
    Msomi, J. Z.
    Abdallah, H. M. I.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2017, 30 (08) : 2371 - 2374
  • [6] Efficient degradation of Rhodamine B in water by CoFe2O4/H2O2 and CoFe2O4/PMS systems: A comparative study
    Liu, Dongdong
    Chen, Dengqian
    Hao, Zhengkai
    Tang, Yibo
    Jiang, Lipeng
    Li, Tianqi
    Tian, Bing
    Yan, Cuiping
    Luo, Yuan
    Jia, Boyin
    CHEMOSPHERE, 2022, 307
  • [7] Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor
    Ramli
    Hartono, Ambran
    Sanjaya, Edi
    Aminudin, Ahmad
    Khairurrijal
    Haryanto, Freddy
    Imawan, Cuk
    Djamal, Mitra
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2016, 48 (03) : 230 - 240
  • [8] COMPARISON BETWEEN MAGNETIC PROPERTIES OF CoFe2O4 AND CoFe2O4/POLYPYRROLE NANOPARTICLES
    Mazeika, K.
    Bacyte, V
    Tykhonenko-Polishchuk, Yu O.
    Kulyk, M. M.
    Yelenich, O., V
    Tovstolytkin, A., I
    LITHUANIAN JOURNAL OF PHYSICS, 2018, 58 (03): : 267 - 276
  • [9] Origin of magnetic anisotropy in ZnO/CoFe2O4 and CoO/CoFe2O4 core/shell nanoparticle systems
    Winkler, Elin L.
    Lima, Enio, Jr.
    Tobia, Dina
    Saleta, Martin E.
    Troiani, Horacio E.
    Agostinelli, Elisabetta
    Fiorani, Dino
    Zysler, Roberto D.
    APPLIED PHYSICS LETTERS, 2012, 101 (25)
  • [10] Influence of CoFe2O4 content on the multifunctional properties of BiFeO3–CoFe2O4 core-shell nanocomposites
    Noori, Fatemeh
    Izadifard, Morteza
    Ghazi, M.E.
    Ceramics International, 50 (21): : 42461 - 42477