Multi-scale attention in attention neural network for single image deblurring☆

被引:0
|
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multi-scale network for single image deblurring based on ensemble learning module
    Wu W.
    Pan Y.
    Su N.
    Wang J.
    Wu S.
    Xu Z.
    Yu Y.
    Liu Y.
    Multimedia Tools and Applications, 2025, 84 (11) : 9045 - 9064
  • [42] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE RESIDUAL ATTENTION NETWORK
    Xie, Wen
    Wu, Qinzhe
    Ren, Wen
    Zhang, Yuzhuo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7649 - 7652
  • [43] MGTANet: Multi-Scale Guided Token Attention Network for Image Captioning
    Jia, Wenhao
    Wang, Ronggui
    Yang, Juan
    Xua, Lixia
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 237 - 245
  • [44] MSAANet: Multi-scale Axial Attention Network for medical image segmentation
    Zeng, Hao
    Shan, Xinxin
    Feng, Yu
    Wen, Ying
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2291 - 2296
  • [45] GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
    Liu, Xiaohong
    Ma, Yongrui
    Shi, Zhihao
    Chen, Jun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7313 - 7322
  • [46] Lightweight multi-scale generative adversarial network with attention for image denoising
    Hu, Xuegang
    Zhao, Wei
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [47] MSDANet: A multi-scale dilation attention network for medical image segmentation
    Zhang, Jinquan
    Luan, Zhuang
    Ni, Lina
    Qi, Liang
    Gong, Xu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [48] Multi-scale Attention Convolutional Neural Network for time series classification
    Chen, Wei
    Shi, Ke
    NEURAL NETWORKS, 2021, 136 (136) : 126 - 140
  • [49] Multi-scale Underwater Image Enhancement Network Based on Attention Mechanism
    Fang Ming
    Liu Xiaohan
    Fu Feiran
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3513 - 3521
  • [50] Attention based multi-scale nested network for biomedical image segmentation
    Cheng, Dapeng
    Deng, Jia
    Xiao, Jinjie
    Yanyan, Mao
    Kang, Jialong
    Gai, Jiale
    Zhang, Baosheng
    Zhao, Feng
    HELIYON, 2024, 10 (14)