Multi-scale attention in attention neural network for single image deblurring☆

被引:0
|
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Single image super-resolution with lightweight multi-scale dilated attention network
    Song, Xiaogang
    Pang, Xinchao
    Zhang, Lei
    Lu, Xiaofeng
    Hei, Xinhong
    APPLIED SOFT COMPUTING, 2025, 169
  • [32] Multi-Scale Visual Attention Deep Convolutional Neural Network for Multi-Focus Image Fusion
    Lai, Rui
    Li, Yongxue
    Guan, Juntao
    Xiong, Ai
    IEEE ACCESS, 2019, 7 : 114385 - 114399
  • [33] A Multi-Scale Feature Extraction-Based Normalized Attention Neural Network for Image Denoising
    Wang, Yi
    Song, Xiao
    Gong, Guanghong
    Li, Ni
    ELECTRONICS, 2021, 10 (03) : 1 - 19
  • [34] MAGNet: A Convolutional Neural Network with Multi-Scale and Global Attention Modules for Medical Image Segmentation
    Bharati, Subrato
    Ahmad, M. Omair
    Swamy, M. N. S.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [35] A self-attention multi-scale convolutional neural network method for SAR image despeckling
    Wen, Zhiqing
    He, Yi
    Yao, Sheng
    Yang, Wang
    Zhang, Lifeng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (03) : 902 - 923
  • [36] Blind Attention Geometric Restraint Neural Network for Single Image Dynamic/Defocus Deblurring
    Zhang, Jie
    Zhai, Wanming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8404 - 8417
  • [37] Msap: multi-scale attention probabilistic network for underwater image enhancement network
    Chang, Baocai
    Li, Jinjiang
    Wang, Haiyang
    Li, Mengjun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 653 - 661
  • [38] Deblurring Model of Image Multi-Scale Dense Network
    Song Haoze
    Wu Xiaojun
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (21)
  • [39] Multi-scale Multi-attention Network for Moire Document Image Binarization
    Guo, Yanqing
    Ji, Caijuan
    Zheng, Xin
    Wang, Qianyu
    Luo, Xiangyang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
  • [40] Multi-Scale Frequency Separation Network for Image Deblurring
    Zhang, Yanni
    Li, Qiang
    Qi, Miao
    Liu, Di
    Kong, Jun
    Wang, Jianzhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5525 - 5537