Multi-scale attention in attention neural network for single image deblurring☆

被引:0
|
作者
Lee, Ho Sub [1 ]
Cho, Sung In [2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Gumi 39177, Gyeongbuk, South Korea
[2] Dongguk Univ, Dept Multimedia Engn, Seoul 04620, South Korea
关键词
Deep learning; Image deblurring; Attention in attention; Channel attention; Spatial attention; MODEL; DARK;
D O I
10.1016/j.displa.2024.102860
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image deblurring, which eliminates blurring artifacts to recover details from a given input image, represents an important task for the computer vision field. Recently, the attention mechanism with deep neural networks (DNN) demonstrates promising performance of image deblurring. However, they have difficulty learning complex blurry and sharp relationships through a balance of spatial detail and high-level contextualized information. Moreover, most existing attention-based DNN methods fail to selectively exploit the information from attention and non-attention branches. To address these challenges, we propose a new approach called Multi-Scale Attention in Attention (MSAiA) for image deblurring. MSAiA incorporates dynamic weight generation by leveraging the joint dependencies of channel and spatial information, allowing for adaptive changes to the weight values in attention and non-attention branches. In contrast to existing attention mechanisms that primarily consider channel or spatial dependencies and do not adequately utilize the information from attention and non-attention branches, our proposed AiA design combines channel-spatial attention. This attention mechanism effectively utilizes the dependencies between channel-spatial information to allocate weight values for attention and non-attention branches, enabling the full utilization of information from both branches. Consequently, the attention branch can more effectively incorporate useful information, while the non-attention branch avoids less useful information. Additionally, we employ a novel multi-scale neural network that aims to learn the relationships between blurring artifacts and the original sharp image by further exploiting multi-scale information. The experimental results prove that the proposed MSAiA achieves superior deblurring performance compared with the state-of-the-art methods.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-scale recurrent attention network for image motion deblurring
    Wang X.
    Ouyang W.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (06):
  • [2] Multi-scale residual attention network for single image dehazing
    Sheng, Jiechao
    Lv, Guoqiang
    Du, Gang
    Wang, Zi
    Feng, Qibin
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [3] Multi-Scale Attention Network for Image Cropping
    Lian, Tianpei
    Xian, Ke
    Pan, Zhiyu
    Hong, Chaoyi
    Cao, Zhiguo
    Zhong, Weicai
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2640 - 2645
  • [4] Multi-scale attention network for image inpainting
    Qin, Jia
    Bai, Huihui
    Zhao, Yao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 204
  • [5] Multi-Scale Feature Fusion Network with Attention for Single Image Dehazing
    Hu, Bin
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 608 - 615
  • [6] Multi-Scale Attention Feature Enhancement Network for Single Image Dehazing
    Dong, Weida
    Wang, Chunyan
    Sun, Hao
    Teng, Yunjie
    Xu, Xiping
    SENSORS, 2023, 23 (19)
  • [7] Multi-Scale Feature Fusion Network with Attention for Single Image Dehazing
    Pattern Recognition and Image Analysis, 2021, 31 : 608 - 615
  • [8] Multi-Scale Neural Network With Dilated Convolutions for Image Deblurring
    Ople, Jose Jaena Mari
    Yeh, Pin-Yi
    Sun, Shih-Wei
    Tsai, I-Te
    Hua, Kai-Lung
    IEEE ACCESS, 2020, 8 : 53942 - 53952
  • [9] STACKED MULTI-SCALE ATTENTION NETWORK FOR IMAGE COLORIZATION
    Jiang, Bin
    Xu, Fangqiang
    Xia, Jun
    Yang, Chao
    Huang, Wei
    Huang, Yun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2225 - 2229
  • [10] Multi-Scale Context Attention Network for Image Retrieval
    Lou, Yihang
    Bai, Yan
    Wang, Shiqi
    Duan, Ling-Yu
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1128 - 1136