A New Hybrid Short Term Solar Irradiation Forecasting Method Based on CEEMDAN Decomposition Approach and BiLSTM Deep Learning Network with Grid Search Algorithm

被引:0
|
作者
Gupta A. [1 ]
Sharma S. [1 ]
Saroha S. [2 ]
机构
[1] Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, Ambala
[2] Guru Jambheshwar University of Science and Technology, Haryana, Hisar
关键词
bidirectional long short term memory; complete ensemble EMD with adaptive noise; Deep learning network; Diebold Mariano Hypothesis test; directional change in forecasting; gate recurrent unit; hyper parameters; long short term memory;
D O I
10.13052/dgaej2156-3306.3842
中图分类号
学科分类号
摘要
An accurate and efficient forecasting of solar energy is necessary for managing the electricity generation and distribution in today’s electricity supply system. However, due to its random character in its time series, accurate forecasting of solar irradiation is a difficult task; but it is important for grid management, scheduling and its balancing. To fully utilize the solar energy in order to balance the generation and consumption, this paper proposed an ensemble approach using CEEMDAN-BiLSTM combination to forecast short term solar irradiation. In this, Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) extract the inherent characteristics of time series data by decomposing it into low and high frequency Intrinsic Mode Functions (IMF’s) and Bidirectional Long Short Term Memory (BiLSTM) used as a forecasting tool to forecast the solar Global Horizontal Irradiance (GHI). Furthermore, using extensive experimental analysis, the research minimizes the number of IMF’s by integrating the CEEMDAN decomposed component (IMF1–IMF14) in order to increase the prediction accuracy. Then, for each IMF subseries, the trained standalone BiLSTM network are assigned to carry out the forecasting. In last stage, the forecasted results of each BiLSTM network are aggregate to compile final results. Two year data (2012–13) of Delhi, India from National Solar Radiation Database (NSRDB) has been used for training while one year data (2014) used for testing purpose for the same location. The proposed model performance is measured in terms of root mean square error (RMSE), mean absolute percentage error (MAPE), Correlation coefficient (R2) and forecast skill (FS). For the comparative analysis of proposed model, several others models: persistence model, unidirectional deep learning models: long short term memory (LSTM), gated recurrent unit (GRU), BiLSTM and two CEEMDAN based BiLSTM models are developed. The proposed model achieved lowest annual average RMSE (18.86 W/m2, 22.24 W/m2, 26.25 W/m2) and MAPE (2.19%, 4.81%, 6.77%) among the other developed models for 1-hr, 2-hr and 3-hr ahead solar GHI forecasting respectively. The maximum correlation coefficient (R2) obtained by the proposed model is 96.4 for 1-hr ahead respectively; on the other hand, forecast skill (%) of 89% with reference to benchmark model. Various test such as: Diebold Mariano Hypothesis test (DMH) and directional change in forecasting (DC) are used to analyze the sensitivity with reference to the difference in forecasted and observed value. © 2023 River Publishers.
引用
收藏
页码:1073 / 1118
页数:45
相关论文
共 50 条
  • [41] Long short-term memory network based deep transfer learning approach for sales forecasting
    Erol, Begum
    Inkaya, Tulin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (01): : 191 - 202
  • [42] Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization
    Molu, Reagan Jean Jacques
    Tripathi, Bhaskar
    Mbasso, Wulfran Fendzi
    Naoussi, Serge Raoul Dzonde
    Bajaj, Mohit
    Wira, Patrice
    Blazek, Vojtech
    Prokop, Lukas
    Misak, Stanislav
    RESULTS IN ENGINEERING, 2024, 23
  • [43] A hybrid intelligent algorithm based short-term load forecasting approach
    Hooshmand, Rahmat-Allah
    Amooshahi, Habib
    Parastegari, Moein
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 313 - 324
  • [44] SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON MULTIVARIATE VARIATIONAL MODE DECOMPOSITION AND HYBRID DEEP NEURAL NETWORK
    Guo W.
    Sun S.
    Tao P.
    Xu J.
    Bai X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04): : 489 - 499
  • [45] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [46] Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
    Zhang, Qian
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Ding, Jinjin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [47] Short-term building electricity load forecasting with a hybrid deep learning method
    Chen, Wenhao
    Rong, Fei
    Lin, Chuan
    ENERGY AND BUILDINGS, 2025, 330
  • [48] Short-term power grid load forecasting based on VMD-SE-Bilstm-Attention hybrid model
    Zhong, Bin
    Yang, Liu
    Li, Bingruo
    Ji, Ming
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 1951 - 1958
  • [49] Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
    Chen, Jiayu
    Liu, Lisang
    Guo, Kaiqi
    Liu, Shurui
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [50] Short-term solar radiation forecasting with a novel image processing-based deep learning approach
    Eslik, Ardan Huseyin
    Akarslan, Emre
    Hocaog, Fatih Onur
    RENEWABLE ENERGY, 2022, 200 : 1490 - 1505