Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization

被引:8
|
作者
Molu, Reagan Jean Jacques [1 ]
Tripathi, Bhaskar [2 ]
Mbasso, Wulfran Fendzi [1 ]
Naoussi, Serge Raoul Dzonde [1 ]
Bajaj, Mohit [3 ,4 ,5 ]
Wira, Patrice [6 ]
Blazek, Vojtech [7 ]
Prokop, Lukas [7 ]
Misak, Stanislav [7 ]
机构
[1] Univ Douala, Technol & Appl Sci Lab, Douala, Cameroon
[2] Thapar Inst Engn & Technol, Sch Humanities & Social Sci, Patiala, India
[3] Era Graph Univ, Dept Elect Engn, Dehra Dun 248002, India
[4] Al Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman, Jordan
[5] Graph Era Hill Univ, Dehra Dun 248002, India
[6] Univ Haute Alsace, IRIMAS Lab, 61 Rue Albert Camus, F-68200 Mulhouse, France
[7] VSB Tech Univ Ostrava, ENET Ctr, CEET, Ostrava 70800, Czech Republic
关键词
Solar irradiance forecasting; Deep learning; Bayesian optimization; Savitzky -Golay filter; Time series forecasting; NETWORKS; ENERGY; MODEL; SYSTEM;
D O I
10.1016/j.rineng.2024.102461
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The optimization of solar energy integration into the power grid relies heavily on accurate forecasting of solar irradiance. In this study, a new approach for short-term solar irradiance forecasting is introduced. This method combines Bayesian Optimized Attention-Dilated Long Short-Term Memory and Savitzky-Golay filtering. The methodology is implemented to analyze data obtained from a solar irradiance probe situated in Douala, Cameroon. Initially, the unprocessed data is augmented by integrating distinctive solar irradiation variables, and the Savitzky-Golay filter with Bayesian Optimization is used to enhance its quality. Subsequently, multiple deep learning models, including Long Short-Term Memory, Bidirectional Long Short-Term Memory, Artificial Neural Networks, Bidirectional Long Short-Term Memory with Additive Attention Mechanism, and Bidirectional Long Short-Term Memory with Additive Attention Mechanism and Dilated Convolutional layers, are trained and evaluated. Out of all the models considered, the proposed approach, which combines the attention mechanism and dilated convolutional layers, demonstrates exceptional performance with the best convergence and accuracy in forecasting. Bayesian Optimization is further utilized to fine -tune the polynomial and window size of the Savitzky-Golay filter and optimize the hyperparameters of the deep learning models. The results show a Symmetric Mean Absolute Percentage Error of 0.6564, a Normalized Root Mean Square Error of 0.2250, and a Root Mean Square Error of 22.9445, surpassing previous studies in the literature. Empirical findings highlight the effectiveness of the proposed methodology in enhancing the accuracy of short-term solar irradiance forecasting. This research contributes to the field by introducing novel data pre-processing techniques, a hybrid deep learning architecture, and the development of a benchmark dataset. These advancements benefit both researchers and solar plant managers, improving solar irradiance forecasting capabilities.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [1] Short-Term Solar Irradiance Forecasting Based on a Hybrid Deep Learning Methodology
    Yan, Ke
    Shen, Hengle
    Wang, Lei
    Zhou, Huiming
    Xu, Meiling
    Mo, Yuchang
    INFORMATION, 2020, 11 (01)
  • [2] Short-term solar irradiance forecasting in streaming with deep learning
    Lara-Benitez, Pedro
    Carranza-Garcia, Manuel
    Luna-Romera, Jose Maria
    Riquelme, Jose C.
    NEUROCOMPUTING, 2023, 546
  • [3] A Spatio-temporal Hybrid Deep Learning Architecture for Short-term Solar Irradiance Forecasting
    Ziyabari, Saeedeh
    Du, Liang
    Biswas, Saroj
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 833 - 838
  • [4] An interpretable horizontal federated deep learning approach to improve short-term solar irradiance forecasting
    Xiao, Zenan
    Gao, Bixuan
    Huang, Xiaoqiao
    Chen, Zaiqing
    Li, Chengli
    Tai, Yonghang
    JOURNAL OF CLEANER PRODUCTION, 2024, 436
  • [5] Short-term forecasting of solar irradiance
    Paulescu, Marius
    Paulescu, Eugenia
    RENEWABLE ENERGY, 2019, 143 : 985 - 994
  • [6] Deep Learning Using Genetic Algorithm Optimization for Short Term Solar Irradiance Forecasting
    Bendali, Wadie
    Saber, Ikram
    Bourachdi, Bensalem
    Boussetta, Mohammed
    Mourad, Youssef
    2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
  • [7] Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network
    Michael, Neethu Elizabeth
    Hasan, Shazia
    Al-Durra, Ahmed
    Mishra, Manohar
    APPLIED ENERGY, 2022, 324
  • [8] Enhancing Short-Term Solar Photovoltaic Power Forecasting Using a Hybrid Deep Learning Approach
    Thipwangmek, Nattha
    Suetrong, Nopparuj
    Taparugssanagorn, Attaphongse
    Tangparitkul, Suparit
    Promsuk, Natthanan
    IEEE ACCESS, 2024, 12 : 108928 - 108941
  • [9] Deep Learning-Based Image Regression for Short-Term Solar Irradiance Forecasting on the Edge
    Papatheofanous, Elissaios Alexios
    Kalekis, Vasileios
    Venitourakis, Georgios
    Tziolos, Filippos
    Reisis, Dionysios
    ELECTRONICS, 2022, 11 (22)
  • [10] Short-Term Solar Irradiance Forecasting Using Deep Learning Techniques: A Comprehensive Case Study
    Tajjour, Salwan
    Chandel, Shyam Singh
    Alotaibi, Majed A.
    Malik, Hasmat
    Marquez, Fausto Pedro Garcia
    Afthanorhan, Asyraf
    IEEE ACCESS, 2023, 11 : 119851 - 119861