Insights into the Surface Electronic Structure and Catalytic Activity of InO x /Au(111) Inverse Catalysts for CO2 Hydrogenation to Methanol

被引:1
|
作者
Reddy, Kasala Prabhakar [1 ]
Tian, Yi [2 ]
Ramirez, Pedro J. [3 ,4 ]
Islam, Arephin [1 ]
Lim, Hojoon [5 ]
Rui, Ning [1 ]
Xie, Yilin [6 ]
Hunt, Adrian [5 ]
Waluyo, Iradwikanari [5 ]
Rodriguez, Jose A. [1 ,2 ]
机构
[1] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] Univ Cent Venezuela, Fac Ciencias, Caracas 1020A, Venezuela
[4] Zoneca CENEX, R&D Labs, Monterrey 64770, Mexico
[5] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[6] Brown Univ, Dept Chem, Providence, RI 02912 USA
来源
ACS CATALYSIS | 2024年 / 14卷 / 22期
关键词
indium oxide nanostructures; gold; oxide-metalInterface; CO2; hydrogenation; methanolproduction; METAL-OXIDE INTERFACE; SELECTIVE HYDROGENATION; STRUCTURE SENSITIVITY; MODEL CATALYSTS; CHEMISTRY; KINETICS; SITES; PD; ADSORPTION; REACTIVITY;
D O I
10.1021/acscatal.4c05837
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct conversion of carbon dioxide (CO2) into methanol (CH3OH) via low-temperature hydrogenation is crucial for recycling anthropogenic CO2 emissions and producing fuels or high value chemicals. Nevertheless, it continues to be a great challenge due to the trade-off between selectivity and catalytic activity. For CO2 hydrogenation, In2O3 catalysts are known for their high CH3OH selectivity. Subsequent studies explored depositing metals on In2O3 to enhance CO2 conversion. Despite extensive research on metal (M) supported In2O3 catalysts, the role of In-M alloys and M/In2O3 interfaces in CO2 activation and CH3OH selectivity remains unclear. In this work, we have examined the behavior of In/Au(111) alloys and InOx/Au(111) inverse systems during CO2 hydrogenation using synchrotron-based ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and catalytic tests in a batch reactor. Indium forms alloys with Au(111) after deposition. The In-Au(111) alloys display high reactivity toward CO2 and can dissociate the molecule at room temperature to generate InOx nanostructures. At very low coverages of In (<= 0.05 ML), the InOx nanostructures are not stable under CO2 hydrogenation conditions and the active In-Au(111) alloys produces mainly CO and little methanol. An increase in indium coverage to 0.3 ML led to stable InOx nanostructures under CO2 hydrogenation conditions. These InOx/Au(111) catalysts displayed a high selectivity (similar to 80%) toward CH3OH production and an activity for CO2 conversion that was at least 10 times larger than that of plain In2O3 or Cu(111) and Cu/ZnO(0001) benchmark catalysts. The results of AP-XPS show that InOx/Au(111) produces methanol via methoxy intermediates. Inverse oxide/metal catalysts containing InOx open up a possibility for improving CO2 -> CH3OH conversion in processes associated with the control of environmental pollution and the production of high value chemicals.
引用
收藏
页码:17148 / 17158
页数:11
相关论文
共 50 条
  • [41] Application of MOFs materials in catalysts for CO2 hydrogenation to methanol
    Guo, Haijiao
    Wen, Yanbo
    Zhang, Chang
    Wang, Jinyi
    Li, Xu
    Liu, Rong
    Jingxi Huagong/Fine Chemicals, 2023, 40 (02): : 244 - 255
  • [42] Pd/ZnO catalysts for direct CO2 hydrogenation to methanol
    Bahruji, Hasliza
    Bowker, Michael
    Hutchings, Graham
    Dimitratos, Nikolaos
    Wells, Peter
    Gibson, Emma
    Jones, Wilm
    Brookes, Catherine
    Morgan, David
    Lalev, Georgi
    JOURNAL OF CATALYSIS, 2016, 343 : 133 - 146
  • [43] Recent Advances in Alloy Catalysts for CO2 Hydrogenation to Methanol
    Gao, Biao
    Wen, Zhang
    Wang, Yifu
    Chen, Donghang
    Yang, Bin
    Ishihara, Tatsumi
    Guo, Limin
    CHEMCATCHEM, 2024, 16 (19)
  • [44] Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation
    Onishi, Naoya
    Himeda, Yuichiro
    COORDINATION CHEMISTRY REVIEWS, 2022, 472
  • [45] Design Principles of Catalytic Materials for CO2 Hydrogenation to Methanol
    Araujo, Thaylan Pinheiro
    Mitchell, Sharon
    Perez-Ramirez, Javier
    ADVANCED MATERIALS, 2024, 36 (48)
  • [46] CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems
    Kristian Stangeland
    Hailong Li
    Zhixin Yu
    Energy, Ecology and Environment, 2020, 5 : 272 - 285
  • [47] Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol
    Sagar, Tatiparthi Vikram
    Zavasnik, Janez
    Finsgar, Matjaz
    Novak Tusar, Natasa
    Pintar, Albin
    CATALYSTS, 2022, 12 (02)
  • [48] CO2 Hydrogenation to Methanol on Cu-ZrO2 Catalysts
    Bali, Ferroudja
    Jalowiecki-Duhamel, Louise
    GLOBAL WARMING: ENGINEERING SOLUTIONS, 2010, : 315 - 327
  • [49] Effect of reduction pretreatment on the structure and catalytic performance of Ir-In2 O3 catalysts for CO2 hydrogenation to methanol
    Ding, Changyu
    Yang, Feifei
    Ye, Xue
    Yang, Chongya
    Liu, Xiaoyan
    Tan, Yuanlong
    Shen, Zheng
    Duan, Hongmin
    Su, Xiong
    Huang, Yanqiang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 : 2 - 11
  • [50] CO2 hydrogenation to methanol on efficient Pd modified α-MoC1_ x catalysts
    Cao, Mingyang
    Chen, Yuanlin
    Liu, Bing
    Zhang, Zehui
    FUEL, 2024, 375