Pd/ZnO catalysts for direct CO2 hydrogenation to methanol

被引:358
|
作者
Bahruji, Hasliza [1 ]
Bowker, Michael [1 ,2 ]
Hutchings, Graham [1 ]
Dimitratos, Nikolaos [1 ]
Wells, Peter [2 ,3 ]
Gibson, Emma [2 ,3 ]
Jones, Wilm [1 ,2 ]
Brookes, Catherine [1 ,2 ]
Morgan, David [1 ]
Lalev, Georgi [1 ]
机构
[1] Cardiff Univ, Cardiff Catalysis Inst, Sch Chem, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales
[2] UK Catalysis Hub, Res Complex Harwell, Harwell OX11 0FA, Oxon, England
[3] UCL, Dept Chem, Gordon St, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会;
关键词
Methanol synthesis; CO2; hydrogenation; Pd/ZnO; PdZn alloy; Sol immobilisation; GAS SHIFT REACTION; CARBON-DIOXIDE; PD-ZN; EFFECTIVE CONVERSION; FORMIC-ACID; ZINC-OXIDE; CU-ZNO; MECHANISM; COPPER; REDUCTION;
D O I
10.1016/j.jcat.2016.03.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct hydrogenation of CO2 into methanol is crucial for providing a means of CO2 fixation and a way to store cleanly produced hydrogen in a more energy-dense and transportable form. Here we have prepared two series of Pd/ZnO catalysts, both by immobilisation of PVA-protected Pd colloids and by Pd impregnation of PdCl2 to investigate structure activity relationships for direct CO2 hydrogenation. Very different performances were found for the different preparation methods, and the Pd loading and pre-reduction of the catalysts were shown to be important factors for optimising methanol yield. The crucial factor for high methanol yield is the formation of a Pd-Zn alloy, either during the reaction itself, or better by high temperature pre-reduction. The formation of the alloy greatly reduces CO production by the reverse water gas shift reaction. The catalysts prepared by sol-immobilisation were relatively stable to thermal treatment. In contrast, the impregnated catalysts were much less thermally stable, due to the presence of remnant chloride on the surface of the catalyst, which was absent for the case of sol immobilisation preparation. The results illustrate the importance of controlling the PdZn particle size and its surface structure for the catalysts to achieve high methanol selectivity (60%, the rest being CO) and conversion (11%) at 250 degrees C and 20 bar. Selectivity for sol-immobilised catalysts decreases from 60% at 3 nm average diameter, to 20% at 7 nm. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [1] PdZn catalysts for the direct hydrogenation of CO2 to methanol
    Bahruji, Hasliza
    Bowker, Michael
    Hutchings, Graham
    Jones, Wilm
    Morgan, David
    Armstrong, Robert
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [2] CO2 Hydrogenation to Methanol at Atmospheric Pressure: Influence of the Preparation Method of Pd/ZnO Catalysts
    Diez-Ramirez, J.
    Valverde, J. L.
    Sanchez, P.
    Dorado, F.
    CATALYSIS LETTERS, 2016, 146 (02) : 373 - 382
  • [3] CO2 Hydrogenation to Methanol at Atmospheric Pressure: Influence of the Preparation Method of Pd/ZnO Catalysts
    J. Díez-Ramírez
    J. L. Valverde
    P. Sánchez
    F. Dorado
    Catalysis Letters, 2016, 146 : 373 - 382
  • [4] Intermetallic Pd-In catalysts for methanol synthesis by CO2 hydrogenation
    A. V. Rassolov
    G. N. Baeva
    A. R. Kolyadenkov
    P. V. Markov
    A. Yu. Stakheev
    Russian Chemical Bulletin, 2023, 72 : 2583 - 2590
  • [5] Bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol
    Jiang, Xiao
    Koizumi, Naoto
    Guo, Xinwen
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [6] Intermetallic Pd-In catalysts for methanol synthesis by CO2 hydrogenation
    Rassolov, A. V.
    Baeva, G. N.
    Kolyadenkov, A. R.
    Markov, P. V.
    Stakheev, A. Yu.
    RUSSIAN CHEMICAL BULLETIN, 2023, 72 (11) : 2583 - 2590
  • [7] A computational study of direct CO2 hydrogenation to methanol on Pd surfaces
    Kowalec, Igor
    Kabalan, Lara
    Catlow, C. Richard A.
    Logsdail, Andrew J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (16) : 9360 - 9373
  • [8] The role of Al doping in Pd/ZnO catalyst for CO2 hydrogenation to methanol
    Song, Jimin
    Liu, Sihang
    Yang, Chengsheng
    Wang, Guishuo
    Tian, Hao
    Zhao, Zhi-jian
    Mu, Rentao
    Gong, Jinlong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
  • [9] Cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of CO2 to methanol
    Lei, Hong
    Zheng, Ruheng
    Liu, Yeping
    Gao, Jiacheng
    Chen, Xiang
    Feng, Xiaoliang
    RSC ADVANCES, 2019, 9 (24) : 13696 - 13704
  • [10] CATALYSIS Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts
    Kattel, Shyam
    Ramirez, Pedro J.
    Chen, Jingguang G.
    Rodriguez, Jose A.
    Liu, Ping
    SCIENCE, 2017, 355 (6331) : 1296 - +