Strain-concentration for fast, compact photonic modulation and non-volatile memory

被引:0
|
作者
Wen, Y. henry [1 ]
Heim, David [1 ]
Zimmermann, Matthew [1 ]
Shugayev, Roman a. [2 ]
Dong, Mark [1 ,3 ]
Leenheer, Andrew j. [2 ]
Miller, Michael r. [2 ]
Gilbert, Gerald [4 ]
Heuck, Mikkel [3 ,5 ]
Eichenfield, Matt [2 ,6 ]
Englund, Dirk r. [3 ]
机构
[1] MITRE Corp, 202 Burlington Rd, Bedford, MA 01730 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Mitre Corp, 200 Forrestal Rd, Princeton, NJ 08540 USA
[5] Tech Univ Denmark, Dept Elect & Photon Engn, Lyngby 2800, Denmark
[6] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA
来源
OPTICA | 2024年 / 11卷 / 11期
基金
美国国家科学基金会;
关键词
MICHELSON INTERFEROMETER; FANO RESONANCES;
D O I
10.1364/OPTICA.529094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A critical figure of merit (FoM) for electro-optic (EO) modulators is the transmission change per voltage, dT/dV. Conventional approaches in wave-guided modulators maximize dT/dV via a high EO coefficient or longer light- material interaction lengths but are ultimately limited by material losses and nonlinearities. Optical and RF resonances improve dT/dV at the cost of spectral non-uniformity, especially for high- Q optical cavity resonances. Here, we introduce an EO modulator based on piezo-strain-concentration of a photonic crystal cavity to address both trade-offs: (i) it eliminates the trade-off between dT/dV and waveguide loss-i.e., enhancement of the resonance tuning efficiency dv0/dV for the fixed EO coefficient, waveguide length, and cavity Q -and (ii) at high DC strains it exhibits a nonvolatile (NV) cavity tuning Av 0 , NV for passive memory and programming of multiple devices into resonance despite fabrication variations. The device is fabricated on a scalable silicon nitride-on-aluminum nitride platform. We measure dv0/dV = 177 f 1 MHz/V, corresponding to Av0 = 40 f 0.32 GHz for a voltage spanning f 120 V with an energy consumption of delta U /Av 0 = 0.17 nW/GHz. The modulation bandwidth is flat up to omega BW , 3 dB / 2 pi = 3.2 f 0.07 MHz for broadband DC-AC and 142 f 17 MHz for resonant operation near a 2.8 GHz mechanical resonance. Optical extinction up to 25 dB is obtained via Fano-type interference. Strain-induced beam-buckling modes are programmable under a "read-write" protocol with a continuous, repeatable tuning range of 5 f 0.25 GHz, allowing for storage and retrieval, which we quantify with mutual information of 2.4 bits and a maximum non-volatile excursion of 8 GHz. Using a full piezo-optical finite-element-model (FEM) we identify key design principles for optimizing strain-based modulators and chart a path towards achieving performance comparable to lithium niobate-based modulators and the study of high strain physics on-chip. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1511 / 1518
页数:8
相关论文
共 50 条
  • [31] Emerging non-volatile memory technologies
    Müller, G
    Nagel, N
    Pinnowa, CU
    Röhr, T
    ESSCIRC 2003: PROCEEDINGS OF THE 29TH EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2003, : 37 - 44
  • [32] Embedded Non-Volatile Memory Technologies
    Shum, Danny
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 3 - 8
  • [33] Non-volatile memory and digital clocking
    Intel, Folsom, CA, United States
    不详
    Dig Tech Pap IEEE Int Solid State Circuits Conf, 2008, (504):
  • [34] Consensus for Non-Volatile Main Memory
    Huynh Tu Dang
    Hofmann, Jaco
    Liu, Yang
    Radi, Marjan
    Vucinic, Dejan
    Soule, Robert
    Pedone, Fernando
    2018 IEEE 26TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2018, : 406 - 411
  • [35] Non-volatile and Flash memory developments
    Neale, R
    ELECTRONIC ENGINEERING, 2001, 73 (898): : 11 - +
  • [36] Nanocrystal non-volatile memory devices
    Horvath, Zs. J.
    Basa, P.
    THIN FILMS AND POROUS MATERIALS, 2009, 609 : 1 - 9
  • [37] Heterogeneous Index for Non-volatile Memory
    Liu R.-C.
    Zhang J.-C.
    Luo Y.-P.
    Jin P.-Q.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 832 - 848
  • [38] Resistance non-volatile memory - RRAM
    Ignatiev, Alex
    Wu, Naijuan
    Chen, Xin
    Nian, Yibo
    Papagianni, Christina
    Liu, Shangqing
    Strozier, John
    MATERIALS AND PROCESSES FOR NONVOLATILE MEMORIES II, 2007, 997 : 181 - 189
  • [39] Introduction to non-volatile memory technologies
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 1 - 13
  • [40] Data Management in Non-Volatile Memory
    Viglas, Stratis D.
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1707 - 1711