Strain-concentration for fast, compact photonic modulation and non-volatile memory

被引:0
|
作者
Wen, Y. henry [1 ]
Heim, David [1 ]
Zimmermann, Matthew [1 ]
Shugayev, Roman a. [2 ]
Dong, Mark [1 ,3 ]
Leenheer, Andrew j. [2 ]
Miller, Michael r. [2 ]
Gilbert, Gerald [4 ]
Heuck, Mikkel [3 ,5 ]
Eichenfield, Matt [2 ,6 ]
Englund, Dirk r. [3 ]
机构
[1] MITRE Corp, 202 Burlington Rd, Bedford, MA 01730 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Mitre Corp, 200 Forrestal Rd, Princeton, NJ 08540 USA
[5] Tech Univ Denmark, Dept Elect & Photon Engn, Lyngby 2800, Denmark
[6] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA
来源
OPTICA | 2024年 / 11卷 / 11期
基金
美国国家科学基金会;
关键词
MICHELSON INTERFEROMETER; FANO RESONANCES;
D O I
10.1364/OPTICA.529094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A critical figure of merit (FoM) for electro-optic (EO) modulators is the transmission change per voltage, dT/dV. Conventional approaches in wave-guided modulators maximize dT/dV via a high EO coefficient or longer light- material interaction lengths but are ultimately limited by material losses and nonlinearities. Optical and RF resonances improve dT/dV at the cost of spectral non-uniformity, especially for high- Q optical cavity resonances. Here, we introduce an EO modulator based on piezo-strain-concentration of a photonic crystal cavity to address both trade-offs: (i) it eliminates the trade-off between dT/dV and waveguide loss-i.e., enhancement of the resonance tuning efficiency dv0/dV for the fixed EO coefficient, waveguide length, and cavity Q -and (ii) at high DC strains it exhibits a nonvolatile (NV) cavity tuning Av 0 , NV for passive memory and programming of multiple devices into resonance despite fabrication variations. The device is fabricated on a scalable silicon nitride-on-aluminum nitride platform. We measure dv0/dV = 177 f 1 MHz/V, corresponding to Av0 = 40 f 0.32 GHz for a voltage spanning f 120 V with an energy consumption of delta U /Av 0 = 0.17 nW/GHz. The modulation bandwidth is flat up to omega BW , 3 dB / 2 pi = 3.2 f 0.07 MHz for broadband DC-AC and 142 f 17 MHz for resonant operation near a 2.8 GHz mechanical resonance. Optical extinction up to 25 dB is obtained via Fano-type interference. Strain-induced beam-buckling modes are programmable under a "read-write" protocol with a continuous, repeatable tuning range of 5 f 0.25 GHz, allowing for storage and retrieval, which we quantify with mutual information of 2.4 bits and a maximum non-volatile excursion of 8 GHz. Using a full piezo-optical finite-element-model (FEM) we identify key design principles for optimizing strain-based modulators and chart a path towards achieving performance comparable to lithium niobate-based modulators and the study of high strain physics on-chip. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1511 / 1518
页数:8
相关论文
共 50 条
  • [21] ELECTRICALLY ERASABLE MEMORY BEHAVES LIKE A FAST, NON-VOLATILE RAM
    WALLACE, C
    ELECTRONICS, 1979, 52 (10): : 128 - 131
  • [22] ShieldNVM: An Efficient and Fast Recoverable System for Secure Non-Volatile Memory
    Yang, Fan
    Chen, Youmin
    Mao, Haiyu
    Lu, Youyou
    Shu, Jiwu
    ACM TRANSACTIONS ON STORAGE, 2020, 16 (02)
  • [23] Integrated magneto-photonic non-volatile multi-bit memory
    Pezeshki, H.
    Li, P.
    Lavrijsen, R.
    Heck, M.
    Koopmans, B.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (08)
  • [24] Integrated all-photonic non-volatile multi-level memory
    Rios, Carlos
    Stegmaier, Matthias
    Hosseini, Peiman
    Wang, Di
    Scherer, Torsten
    Wright, C. David
    Bhaskaran, Harish
    Pernice, Wolfram H. P.
    NATURE PHOTONICS, 2015, 9 (11) : 725 - +
  • [25] Silicon photonic integrated circuits with electrically programmable non-volatile memory functions
    Song, J. -F
    Lim, A. E. -J.
    Luo, X. -S.
    Fang, Q.
    Li, C.
    Jia, L. X.
    Tu, X. -G
    Huang, Y.
    Zhou, H. -F.
    Liow, T. -Y.
    Lo, G. -Q.
    OPTICS EXPRESS, 2016, 24 (19): : 21744 - 21751
  • [26] Integrated all-photonic non-volatile multi-level memory
    Carlos Ríos
    Matthias Stegmaier
    Peiman Hosseini
    Di Wang
    Torsten Scherer
    C. David Wright
    Harish Bhaskaran
    Wolfram H. P. Pernice
    Nature Photonics, 2015, 9 : 725 - 732
  • [27] A FAST AND ENERGY-EFFICIENT NANOELECTROMECHANICAL NON-VOLATILE MEMORY FOR IN-MEMORY COMPUTING
    Lee, Yong-Bok
    Gang, Min-Ho
    Choi, Pan-Kyu
    Kim, Su-Hyun
    Kim, Tae-Soo
    Lee, So-Young
    Yoon, Jun-Bo
    2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2023, : 5 - 8
  • [28] Non-Volatile memory (NVM) technologies
    Shao, Zili
    Chang, Yuan-Hao
    JOURNAL OF SYSTEMS ARCHITECTURE, 2016, 71 : 1 - 1
  • [29] Non-volatile memory based on nanostructures
    Kalinin, Sergei
    Yang, J. Joshua
    Demming, Anna
    NANOTECHNOLOGY, 2011, 22 (25)
  • [30] Advances in non-volatile memory technology
    Wong, Hei
    MICROELECTRONICS RELIABILITY, 2012, 52 (04) : 611 - 612