Strain-concentration for fast, compact photonic modulation and non-volatile memory

被引:0
|
作者
Wen, Y. henry [1 ]
Heim, David [1 ]
Zimmermann, Matthew [1 ]
Shugayev, Roman a. [2 ]
Dong, Mark [1 ,3 ]
Leenheer, Andrew j. [2 ]
Miller, Michael r. [2 ]
Gilbert, Gerald [4 ]
Heuck, Mikkel [3 ,5 ]
Eichenfield, Matt [2 ,6 ]
Englund, Dirk r. [3 ]
机构
[1] MITRE Corp, 202 Burlington Rd, Bedford, MA 01730 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Mitre Corp, 200 Forrestal Rd, Princeton, NJ 08540 USA
[5] Tech Univ Denmark, Dept Elect & Photon Engn, Lyngby 2800, Denmark
[6] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA
来源
OPTICA | 2024年 / 11卷 / 11期
基金
美国国家科学基金会;
关键词
MICHELSON INTERFEROMETER; FANO RESONANCES;
D O I
10.1364/OPTICA.529094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A critical figure of merit (FoM) for electro-optic (EO) modulators is the transmission change per voltage, dT/dV. Conventional approaches in wave-guided modulators maximize dT/dV via a high EO coefficient or longer light- material interaction lengths but are ultimately limited by material losses and nonlinearities. Optical and RF resonances improve dT/dV at the cost of spectral non-uniformity, especially for high- Q optical cavity resonances. Here, we introduce an EO modulator based on piezo-strain-concentration of a photonic crystal cavity to address both trade-offs: (i) it eliminates the trade-off between dT/dV and waveguide loss-i.e., enhancement of the resonance tuning efficiency dv0/dV for the fixed EO coefficient, waveguide length, and cavity Q -and (ii) at high DC strains it exhibits a nonvolatile (NV) cavity tuning Av 0 , NV for passive memory and programming of multiple devices into resonance despite fabrication variations. The device is fabricated on a scalable silicon nitride-on-aluminum nitride platform. We measure dv0/dV = 177 f 1 MHz/V, corresponding to Av0 = 40 f 0.32 GHz for a voltage spanning f 120 V with an energy consumption of delta U /Av 0 = 0.17 nW/GHz. The modulation bandwidth is flat up to omega BW , 3 dB / 2 pi = 3.2 f 0.07 MHz for broadband DC-AC and 142 f 17 MHz for resonant operation near a 2.8 GHz mechanical resonance. Optical extinction up to 25 dB is obtained via Fano-type interference. Strain-induced beam-buckling modes are programmable under a "read-write" protocol with a continuous, repeatable tuning range of 5 f 0.25 GHz, allowing for storage and retrieval, which we quantify with mutual information of 2.4 bits and a maximum non-volatile excursion of 8 GHz. Using a full piezo-optical finite-element-model (FEM) we identify key design principles for optimizing strain-based modulators and chart a path towards achieving performance comparable to lithium niobate-based modulators and the study of high strain physics on-chip. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1511 / 1518
页数:8
相关论文
共 50 条
  • [1] Ultra-fast non-volatile memory
    Thomas Szkopek
    Nature Nanotechnology, 2021, 16 : 853 - 854
  • [2] Ultra-fast non-volatile memory
    Szkopek, Thomas
    NATURE NANOTECHNOLOGY, 2021, 16 (08) : 853 - 854
  • [3] Non-Volatile Photonic Memory Based on a SAHAS Configuration
    Olivares, Irene
    Parra, Jorge
    Sanchis, Pablo
    IEEE PHOTONICS JOURNAL, 2021, 13 (02):
  • [4] Fast Persistent Heap Based on Non-Volatile Memory
    Zhang, Wenzhe
    Lu, Kai
    Wang, Xiaoping
    Jian, Jie
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (05): : 1035 - 1045
  • [5] Makalu: Fast Recoverable Allocation of Non-volatile Memory
    Bhandari, Kumud
    Chakrabarti, Dhruva R.
    Boehm, Hans-J.
    ACM SIGPLAN NOTICES, 2016, 51 (10) : 677 - 694
  • [6] Toward non-volatile photonic memory: concept, material and design
    Zhai, Yongbiao
    Yang, Jia-Qin
    Zhou, Ye
    Mao, Jing-Yu
    Ren, Yi
    Roy, Vellaisamy A. L.
    Han, Su-Ting
    MATERIALS HORIZONS, 2018, 5 (04) : 641 - 654
  • [7] Non-volatile memory
    Casagrande, Giulio
    Chung, Shine
    Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2008, 51
  • [8] Non-volatile memory
    Sofer, Yair
    Oowaki, Yukihito
    Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2005, 48
  • [9] Soft Updates Made Simple and Fast on Non-volatile Memory
    Dong, Mingkai
    Chen, Haibo
    2017 USENIX ANNUAL TECHNICAL CONFERENCE (USENIX ATC '17), 2017, : 719 - 731
  • [10] Fast and Consistent Remote Direct Access to Non-volatile Memory
    Du, Jingwen
    Wang, Fang
    Feng, Dan
    Li, Weiguang
    Li, Fan
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,