共 50 条
Machine-learning-assisted prediction of the size of microgels prepared by aqueous precipitation polymerization
被引:1
|作者:
Suzuki, Daisuke
[1
,2
]
Minato, Haruka
[1
,2
]
Sato, Yuji
[1
,2
]
Namioka, Ryuji
[2
]
Igarashi, Yasuhiko
[3
]
Shibata, Risako
[4
]
Oaki, Yuya
[4
]
机构:
[1] Okayama Univ, Grad Sch Environm Life Nat Sci & Technol, 3-1-1 Tsushimanaka,Kita Ku, Okayama 7008530, Japan
[2] Shinshu Univ, Grad Sch Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba 3058573, Japan
[4] Keio Univ, Fac Sci & Technol, Dept Appl Chem, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
基金:
日本科学技术振兴机构;
日本学术振兴会;
关键词:
HYDROGEL MICROSPHERES;
PARTICLES;
D O I:
10.1039/d4cc04386c
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The size of soft colloids (microgels) is essential; however, control over their size has typically been established empirically. Herein, we report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data, which enables the determination of the synthesis conditions for target-sized microgels. We report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data.
引用
收藏
页码:13678 / 13681
页数:5
相关论文