Multi-Agent Guided Deep Reinforcement Learning Approach Against State Perturbed Adversarial Attacks

被引:0
|
作者
Çerçi, Çağri [1 ]
Temeltas, Hakan [2 ]
机构
[1] Department of Mechatronics Engineering, Istanbul Technical University, İstanbul, Maslak,34467, Turkey
[2] Department of Control and Automation Engineering, Istanbul Technical University, İstanbul, Maslak,34467, Turkey
关键词
All Open Access; Gold;
D O I
10.1109/ACCESS.2024.3485036
中图分类号
学科分类号
摘要
Adversarial machine learning
引用
下载
收藏
页码:156146 / 156159
相关论文
共 50 条
  • [21] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [22] Adversarial Deep Reinforcement Learning for Improving the Robustness of Multi-agent Autonomous Driving Policies
    Sharif, Aizaz
    Marijan, Dusica
    2022 29TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, APSEC, 2022, : 61 - 70
  • [23] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [24] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [25] Critical State Detection for Adversarial Attacks in Deep Reinforcement Learning
    Kumar, Praveen R.
    Kumar, Niranjan, I
    Sivasankaran, Sujith
    Vamsi, Mohan A.
    Vijayaraghavan, Vineeth
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1761 - 1766
  • [26] Adversarial Attacks On Multi-Agent Communication
    Tu, James
    Wang, Tsunhsuan
    Wang, Jingkang
    Manivasagam, Sivabalan
    Ren, Mengye
    Urtasun, Raquel
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7748 - 7757
  • [27] A multi-agent deep reinforcement learning approach for traffic signal coordination
    Hu, Ta-Yin
    Li, Zhuo-Yu
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1428 - 1444
  • [28] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Jana, Meghdeep
    Vachhani, Leena
    Sinha, Arpita
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 724 - 745
  • [29] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Meghdeep Jana
    Leena Vachhani
    Arpita Sinha
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 724 - 745
  • [30] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,