Polygamy relations for tripartite and multipartite quantum systems

被引:1
|
作者
Liang, Yanying [1 ]
Situ, Haozhen [1 ]
Zheng, Zhu-Jun [2 ,3 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[3] South China Univ Technol, Lab Quantum Sci & Engn, Guangzhou 510642, Peoples R China
关键词
Quantum entanglement; Polygamy relationst; Tripartite quantum systemst; Multipartite quantum systems; MONOGAMY;
D O I
10.1007/s11128-024-04597-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the polygamy property in tripartite and multipartite quantum systems. In tripartite system, we build a solution set for polygamy in tripartite system and find a sufficient and necessary condition of the set for continuous measure of quantum correlation Q to be polygamous. In multipartite system, we provide generalized definitions for polygamy in n-qubit systems with n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}, and then, we build polygamy inequalities with a polygamy power beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Next we also describe that any entanglement of assistance can be polygamy according to our new definition in multipartite systems. For better understanding, we use right triangle and tetrahedron to explain our new polygamy relations. Moreover, the polygamy relations between each single qubit and its remaining partners are also investigated to enrich our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Separability of tripartite quantum systems
    Li, Ming
    Fei, Shao-Ming
    Wang, Zhi-Xi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 (04) : 859 - 866
  • [42] Strong quantum nonlocality in multipartite quantum systems
    Zhang, Zhi-Chao
    Zhang, Xiangdong
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [43] Local quantum uncertainty for multipartite quantum systems
    Mazhar Ali
    The European Physical Journal D, 2020, 74
  • [44] Multipartite quantum correlations in open quantum systems
    Ma, ZhiHao
    Chen, ZhiHua
    Fanchini, Felipe Fernandes
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [45] Local quantum uncertainty for multipartite quantum systems
    Ali, Mazhar
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (09):
  • [46] Tighter generalized monogamy and polygamy relations for multiqubit systems
    Zhi-Xiang Jin
    Shao-Ming Fei
    Quantum Information Processing, 2020, 19
  • [47] General monogamy and polygamy properties of quantum systems
    Bing Xie
    Ming-Jing Zhao
    Bo Li
    Quantum Information Processing, 22
  • [48] General monogamy and polygamy properties of quantum systems
    Xie, Bing
    Zhao, Ming-Jing
    Li, Bo
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [49] Tighter generalized monogamy and polygamy relations for multiqubit systems
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [50] Partial correlations in multipartite quantum systems
    Guo, Zhihua
    Cao, Huaixin
    Qu, Shixian
    INFORMATION SCIENCES, 2014, 289 : 262 - 272