Polygamy relations for tripartite and multipartite quantum systems

被引:1
|
作者
Liang, Yanying [1 ]
Situ, Haozhen [1 ]
Zheng, Zhu-Jun [2 ,3 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[3] South China Univ Technol, Lab Quantum Sci & Engn, Guangzhou 510642, Peoples R China
关键词
Quantum entanglement; Polygamy relationst; Tripartite quantum systemst; Multipartite quantum systems; MONOGAMY;
D O I
10.1007/s11128-024-04597-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the polygamy property in tripartite and multipartite quantum systems. In tripartite system, we build a solution set for polygamy in tripartite system and find a sufficient and necessary condition of the set for continuous measure of quantum correlation Q to be polygamous. In multipartite system, we provide generalized definitions for polygamy in n-qubit systems with n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}, and then, we build polygamy inequalities with a polygamy power beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Next we also describe that any entanglement of assistance can be polygamy according to our new definition in multipartite systems. For better understanding, we use right triangle and tetrahedron to explain our new polygamy relations. Moreover, the polygamy relations between each single qubit and its remaining partners are also investigated to enrich our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Quantum correlations in multipartite quantum systems
    Jafarizadeh, M. A.
    Heshmati, A., I
    Karimi, N.
    Yahyavi, M.
    EPL, 2018, 121 (05)
  • [32] Tighter monogamy and polygamy relations of multiparty quantum entanglement
    Gao, Limin
    Yan, Fengli
    Gao, Ting
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [33] Tighter monogamy and polygamy relations in multiqubit systems
    Zhaonan Zhang
    Yu Luo
    Yongming Li
    The European Physical Journal D, 2019, 73
  • [34] Tighter monogamy and polygamy relations in multiqubit systems
    Zhang, Zhaonan
    Luo, Yu
    Li, Yongming
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (01):
  • [35] Tighter monogamy and polygamy relations of multiparty quantum entanglement
    Limin Gao
    Fengli Yan
    Ting Gao
    Quantum Information Processing, 2020, 19
  • [36] Quantum discords of tripartite quantum systems
    Jianming Zhou
    Xiaoli Hu
    Naihuan Jing
    Quantum Information Processing, 21
  • [37] Quantum steering in tripartite quantum systems
    Xiao Shu
    Guo ZhiHua
    Cao HuaiXin
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2019, 49 (01)
  • [38] Quantum discords of tripartite quantum systems
    Zhou, Jianming
    Hu, Xiaoli
    Jing, Naihuan
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [39] SEPARABILITY OF MULTIPARTITE QUANTUM SYSTEMS
    Li, Ming
    Jing, Wang
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 69 (01) : 103 - 111
  • [40] Quantum coherence in multipartite systems
    Yao, Yao
    Xiao, Xing
    Ge, Li
    Sun, C. P.
    PHYSICAL REVIEW A, 2015, 92 (02):