Polygamy relations for tripartite and multipartite quantum systems

被引:1
|
作者
Liang, Yanying [1 ]
Situ, Haozhen [1 ]
Zheng, Zhu-Jun [2 ,3 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[3] South China Univ Technol, Lab Quantum Sci & Engn, Guangzhou 510642, Peoples R China
关键词
Quantum entanglement; Polygamy relationst; Tripartite quantum systemst; Multipartite quantum systems; MONOGAMY;
D O I
10.1007/s11128-024-04597-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the polygamy property in tripartite and multipartite quantum systems. In tripartite system, we build a solution set for polygamy in tripartite system and find a sufficient and necessary condition of the set for continuous measure of quantum correlation Q to be polygamous. In multipartite system, we provide generalized definitions for polygamy in n-qubit systems with n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}, and then, we build polygamy inequalities with a polygamy power beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Next we also describe that any entanglement of assistance can be polygamy according to our new definition in multipartite systems. For better understanding, we use right triangle and tetrahedron to explain our new polygamy relations. Moreover, the polygamy relations between each single qubit and its remaining partners are also investigated to enrich our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Monogamy and Polygamy Relations of Quantum Correlations for Multipartite Systems
    Zhang, Mei-Ming
    Jing, Naihuan
    Zhao, Hui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (01)
  • [2] Monogamy and Polygamy Relations of Quantum Correlations for Multipartite Systems
    Mei-Ming Zhang
    Naihuan Jing
    Hui Zhao
    International Journal of Theoretical Physics, 2022, 61
  • [3] Strong polygamy and monogamy relations for multipartite quantum systems
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
  • [4] Strong polygamy and monogamy relations for multipartite quantum systems
    Zhi-Xiang Jin
    Shao-Ming Fei
    Quantum Information Processing, 2020, 19
  • [5] Polygamy relations of multipartite systems
    Jin, Zhi-Xiang
    Fei, Shao-Ming
    Qiao, Cong-Feng
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [6] Polygamy relations of multipartite systems
    Zhi-Xiang Jin
    Shao-Ming Fei
    Cong-Feng Qiao
    Quantum Information Processing, 2019, 18
  • [7] On monogamy and polygamy relations of multipartite systems
    Zhang, Xia
    Jing, Naihuan
    Liu, Ming
    Ma, Haitao
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [8] General monogamy and polygamy relations of arbitrary quantum correlations for multipartite systems
    Shen, Zhong-Xi
    Wang, Ke-Ke
    Fei, Shao-Ming
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [9] General monogamy and polygamy relations of arbitrary quantum correlations for multipartite systems
    Zhong-Xi Shen
    Ke-Ke Wang
    Shao-Ming Fei
    The European Physical Journal Plus, 138
  • [10] Polygamy of entanglement in multipartite quantum systems
    Kim, Jeong San
    PHYSICAL REVIEW A, 2009, 80 (02):