Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching

被引:2
|
作者
Zhang, Jinli [1 ]
Ren, Hongwei [1 ]
Jiang, Zongli [1 ]
Chen, Zheng [2 ]
Yang, Ziwei [3 ]
Matsubara, Yasuko [2 ]
Sakurai, Yasushi [2 ]
机构
[1] Beijing Univ Technol, Dept Comp Sci, Beijing 100022, Peoples R China
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 5650871, Japan
[3] Kyoto Univ, Bioinformat Ctr, Kyoto 6158540, Japan
基金
日本学术振兴会; 中国国家自然科学基金; 日本科学技术振兴机构;
关键词
Multi-omics; clustering; contrastive learning; self-attention;
D O I
10.1109/TNB.2024.3456797
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [31] Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction
    Dimitrakopoulos, Lampros
    Prassas, Ioannis
    Diamandis, Eleftherios P.
    Charames, George S.
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2017, 54 (06) : 414 - 432
  • [32] Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications
    Liu, Xiaojie
    Peng, Ting
    Xu, Miaochun
    Lin, Shitong
    Hu, Bai
    Chu, Tian
    Liu, Binghan
    Xu, Yashi
    Ding, Wencheng
    Li, Li
    Cao, Canhui
    Wu, Peng
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2024, 17 (01)
  • [33] Benchmark study of feature selection strategies for multi-omics data
    Yingxia Li
    Ulrich Mansmann
    Shangming Du
    Roman Hornung
    BMC Bioinformatics, 23
  • [34] Benchmark study of feature selection strategies for multi-omics data
    Li, Yingxia
    Mansmann, Ulrich
    Du, Shangming
    Hornung, Roman
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [35] MSPL: Multimodal Self-Paced Learning for Multi-Omics Feature Selection and Data Integration
    Yang, Zi-Yi
    Xia, Liang-Yong
    Zhang, Hui
    Liang, Yong
    IEEE ACCESS, 2019, 7 : 170513 - 170524
  • [36] HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
    Ma, Yuanyuan
    Liu, Lifang
    Ma, Yingjun
    Zhang, Song
    BIOINFORMATICS, 2023, 39 (06)
  • [37] Statistical Challenges in Multi-omics Integration
    Sebastiani, Paola
    Leshchk, Anastasia
    Song, Zeyuan
    Karagiannis, Tanya T.
    Gurinovich, Anastasia
    Bae, Harold
    Li, Mengze
    Monti, Stefano
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 530 - 530
  • [38] Integration of multi-omics and non-omics data: AI approaches and challenges
    Lopez de Maturana, Evangelina
    Sabroso, Sergio
    Malats, Nuria
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 24 - 24
  • [39] Integration strategies of multi-omics data for machine learning analysis
    Picard M.
    Scott-Boyer M.-P.
    Bodein A.
    Périn O.
    Droit A.
    Computational and Structural Biotechnology Journal, 2021, 19 : 3735 - 3746
  • [40] Multi-omics data integration methods and their applications in psychiatric disorders
    Sathyanarayanan, Anita
    Mueller, Tamara T.
    Moni, Mohammad Ali
    Schueler, Katja
    Baune, Bernhard T.
    Lio, Pietro
    Mehta, Divya
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 69 : 26 - 46