Freeze-necking and volumetric change of clay during freezing by 3D x-ray computed tomography

被引:0
|
作者
Fan, Wenhu [1 ]
Wang, Jiaqi [1 ]
Zhang, Tao [1 ]
Zuo, Xi [1 ]
Xiao, Zhi [1 ]
He, Pengfei [2 ]
Shi, Xin [3 ]
机构
[1] Jinling Inst Technol, Sch Architectural Engn, Nanjing 211169, Jiangsu, Peoples R China
[2] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou 730050, Gansu, Peoples R China
[3] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
freeze-necking; volumetric change; clay; freezing; three-dimensional x-ray computed tomography; PORE-WATER-PRESSURE; FROST HEAVE; SOIL; THAW;
D O I
10.1088/2053-1591/ad913d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In artificial freezing engineering, the freezing temperature is an important factor affecting soil frost heave deformation, and studying its impact is of great significance. The frost heave ratio of soil is a crucial factor for designing and predicting soil frost heave. However, it only considers vertical deformation while neglecting radial deformation. This paper introduces a simple unidirectional freezing apparatus specifically designed for three-dimensional x-ray computed tomography (CT) scanning, which allows for the investigation of internal structural changes in clay during freezing at four different freezing temperatures (i.e., -3 degrees C, -5 degrees C, -7 degrees C, and -9 degrees C). Freeze-necking of the soil was observed during freezing. An image processing method was proposed to segment the soil samples, and parameters such as length, equivalent diameter, and volume were measured to assess changes during freezing. The observed variations in necking depth and equivalent diameter indicate that freeze-necking is uniform. As the freezing temperature decreased, the necking depth reduced from 72.4 mm to 38.1 mm, and within this necking depth, the equivalent diameter decreased progressively from the bottom to the top. Moisture content increased near the cold end of the soil and decreased near the warm end, suggesting that freeze-necking is due to moisture migration within the soil. Considering freeze-necking, the volumetric frost heave ratio was defined to characterize soil frost heave deformation. This ratio also decreases as the freezing temperature decreases, and the values are smaller than those of the traditional frost heave ratio. The discrepancies become more pronounced at higher freezing temperatures, reaching up to 1.8% at -3 degrees C. The results indicate that lower freezing temperatures can reduce frost heave deformation, and freeze-necking requires greater attention in engineering at higher freezing temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Unveiling 3D Deformations in Polymer Composites by Coupled Micro X-Ray Computed Tomography and Volumetric Digital Image Correlation
    B. Croom
    W.-M. Wang
    J. Li
    X. Li
    Experimental Mechanics, 2016, 56 : 999 - 1016
  • [32] X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology
    Katsamenis, Orestis L.
    Olding, Michael
    Warner, Jane A.
    Chatelett, David S.
    Jones, Mark G.
    Sgalla, Giacomo
    Smit, Bennie
    Larkin, Oliver J.
    Haig, Ian
    Richeldi, Luca
    Sinclair, Ian
    Lackie, Peter M.
    Schneider, Philipp
    AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (08): : 1608 - 1620
  • [33] 3D characterization of walnut morphological traits using X-ray computed tomography
    Bernard, Anthony
    Hamdy, Sherif
    Le Corre, Laurence
    Dirlewanger, Elisabeth
    Lheureux, Fabrice
    PLANT METHODS, 2020, 16 (01)
  • [34] X-ray computed tomography for 3D crystallization monitoring: A use case with paracetamol
    Clercq, Sebastien
    Vicente, Jerome
    Moulin, Philippe
    JOURNAL OF CRYSTAL GROWTH, 2024, 642
  • [35] Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs
    Shin, Seungjoo
    Kim, Min Woo
    Jin, Kyong Hwan
    Yi, Kwang Moo
    Kohmura, Yoshiki
    Ishikawa, Tetsuya
    Je, Jung Ho
    Park, Jaesik
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] 3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
    Godinho, Jose Ricardo Assuncao
    Hassanzadeh, Ahmad
    Heinig, Thomas
    NATURAL RESOURCES RESEARCH, 2023, 32 (02) : 479 - 499
  • [37] Assessing rechargeable batteries with 3D X-ray microscopy, computed tomography, and nanotomography
    Villarraga-Gomez, Herminso
    Begun, Dana L.
    Bhattad, Pradeep
    Mo, Kai
    Rad, Mansoureh Norouzi
    White, Robin T.
    Kelly, Stephen T.
    NONDESTRUCTIVE TESTING AND EVALUATION, 2022, 37 (05) : 519 - 535
  • [38] 3D Quantitative Mineral Characterization of Particles Using X-ray Computed Tomography
    Jose Ricardo Assunção Godinho
    Ahmad Hassanzadeh
    Thomas Heinig
    Natural Resources Research, 2023, 32 : 479 - 499
  • [39] 3D characterization of walnut morphological traits using X-ray computed tomography
    Anthony Bernard
    Sherif Hamdy
    Laurence Le Corre
    Elisabeth Dirlewanger
    Fabrice Lheureux
    Plant Methods, 16
  • [40] 3D analysis of TRISO fuel compacts via X-ray computed tomography
    Kane, Joshua J.
    Marshall, Douglas W.
    Cordes, Nikolaus L.
    Chuirazzi, William C.
    Kombaiah, Boopathy
    van Rooyen, Isabella
    Stempien, John D.
    JOURNAL OF NUCLEAR MATERIALS, 2022, 565