Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure

被引:1
|
作者
Muniyandi, Govinda Raj [1 ]
Ubagaram, Jeyapaul [2 ,3 ]
Srinivasan, Abinaya [4 ]
James, Daisy Rani [4 ]
Pugazhenthiran, Nalandhiran [1 ]
Govindasamy, Chandramohan [5 ]
Joseph, John Alphin [6 ]
Bosco, Aruljothy John [6 ]
Mahalingam, Shanmugam [7 ]
Kim, Junghwan [7 ,8 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Chem, Av Espana 1680, Valparaiso, Chile
[2] St Xaviers Coll Autonomous, PG & Res Dept Chem, Palayankottai 627002, Tamil Nadu, India
[3] Manonmaniam Sundaranar Univ, Tirunelveli 627002, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Chem, Chennai 600089, Tamil Nadu, India
[5] King Saud Univ, Coll Appl Med Sci, Dept Community Hlth Sci, POB 10219, Riyadh 11433, Saudi Arabia
[6] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, Tamil Nadu, India
[7] Pukyong Natl Univ, Inst Energy Transport & Fus Res, Busan 48513, South Korea
[8] Pukyong Natl Univ, Dept Mat Syst Engn, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
H-g-C3N4/Bi2S3; Ciprofloxacin; Antibiotics; Hydrothermal method; Wastewater; CIPROFLOXACIN; G-C3N4; ENVIRONMENT; EFFICIENCY; HETEROJUNCTIONS; FABRICATION; MECHANISM; REMOVAL;
D O I
10.1016/j.jiec.2024.09.045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Abnormal concentrations of antibiotics found in aquatic environments have raised serious environmental concerns. For the efficient degradation of antibiotics, it is necessary to develop photocatalysts that react to visible light. In this work, calcination and hydrothermal methods were used to synthesize bare H-g-C3N4 and Bi2S3, respectively. Various analytic methods, such as XRD, XPS, FT-IR, HR-SEM, and HR-TEM, were utilized to verify the accomplished synthesis of the materials produced. The results of ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS) showed that the synthesized nanocomposites exhibited a lower band gap than the bare materials and thus greater visible-light absorption. The degradation efficacy of the bare materials and hydrothermally synthesized nanocomposites over ciprofloxacin were investigated. A high degradation efficiency of 92 % was demonstrated for ciprofloxacin using the H-g-C3N4/Bi2S3 (5 %) nanocomposite. This remarkable efficiency underscores the potential of this nanocomposite in removing antibiotic pollutants from wastewater. In addition, the electron transfer dynamics amid the two materials (H-g-C3N4 and Bi2S3) within the heterojunction was elucidated. The findings provide valuable insights into the mechanisms underlying the enhanced photocatalytic activity of nanocomposites, paving the way for further optimization and development of advanced photocatalytic systems for environmental remediation.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [31] In-situ synthesis of AgCl/WO3 loaded with g-C3N4 as dual Z-scheme heterojunction for boosting photocatalytic degradation of antibiotics
    Pu, Shulan
    Zhao, Qianru
    Luo, Xi
    Wang, Dongying
    Lei, Ke
    Duan, Yujie
    Mao, Linjiao
    Feng, Wei
    Sun, Yan
    SURFACES AND INTERFACES, 2024, 46
  • [32] Enhanced photocatalytic degradation of methylene blue by a direct Z-scheme Bi2S3/ZnIn2S4 photocatalyst
    Chachvalvutikul, Auttaphon
    Pudkon, Watcharapong
    Luangwanta, Tawanwit
    Thongtem, Titipun
    Thongtem, Somchai
    Kittiwachana, Sila
    Kaowphong, Sulawan
    MATERIALS RESEARCH BULLETIN, 2019, 111 : 53 - 60
  • [33] Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
    Li, Yuzhen
    Li, Zhen
    Gao, Lizhen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (13) : 12769 - 12782
  • [34] Formation of Z-scheme g-C3N5-BiOCl to enhance photocatalytic activity under visible light
    Jiao, Yujiang
    Zhang, Yuan
    Zhang, Guyu
    Tian, Mingxia
    Zhao, Jianbo
    Cui, Tianyi
    Yan, Yumin
    Jiang, Jianhui
    APPLIED ORGANOMETALLIC CHEMISTRY, 2023, 37 (08)
  • [35] Direct Z-scheme P-TiO2/g-C3N4 heterojunction for the photocatalytic degradation of sulfa antibiotics
    Yongheng, Dai
    Huayu, Yuan
    Jiang, Li
    Qi, Su
    Qianwen, Yi
    Yuntao, Zhang
    RSC ADVANCES, 2023, 13 (09) : 5957 - 5969
  • [36] Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light
    Zhao, Xuesong
    You, Yingying
    Huang, Shaobin
    Wu, Yixiao
    Ma, Yiyang
    Zhang, Guan
    Zhang, Zhenghua
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
  • [37] Z-scheme designed LaNiO3/g-C3N4/MWCNT nanohybrid with bifunctional photocatalytic applications under visible light
    Athar, Mohammad Saud
    Saleem, Nashrah
    Ahmad, Iftekhar
    Fazil, Mohd
    Ahmad, Tokeer
    Muneer, Mohammad
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [38] Establishing Z-scheme Bi2WO6/g-C3N4 interfaces toward efficient photocatalytic performance of NOx under visible light
    Nguyen, Hoa Cong
    Le, Phi Dinh
    Cao, Thi Minh
    Van Pham, Viet
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 989
  • [39] Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst
    Luo, Bifu
    Chen, Min
    Zhang, Zhengyuan
    Xu, Jie
    Li, Di
    Xu, Dongbo
    Shi, Weidong
    DALTON TRANSACTIONS, 2017, 46 (26) : 8431 - 8438
  • [40] Construction of nitrogen-doped graphene quantum dots-BiVO4/g-C3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light
    Yan, Ming
    Zhu, Fangfang
    Gu, Wei
    Sun, Lin
    Shi, Weidong
    Hua, Yinqun
    RSC ADVANCES, 2016, 6 (66) : 61162 - 61174