Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure

被引:1
|
作者
Muniyandi, Govinda Raj [1 ]
Ubagaram, Jeyapaul [2 ,3 ]
Srinivasan, Abinaya [4 ]
James, Daisy Rani [4 ]
Pugazhenthiran, Nalandhiran [1 ]
Govindasamy, Chandramohan [5 ]
Joseph, John Alphin [6 ]
Bosco, Aruljothy John [6 ]
Mahalingam, Shanmugam [7 ]
Kim, Junghwan [7 ,8 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Chem, Av Espana 1680, Valparaiso, Chile
[2] St Xaviers Coll Autonomous, PG & Res Dept Chem, Palayankottai 627002, Tamil Nadu, India
[3] Manonmaniam Sundaranar Univ, Tirunelveli 627002, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Chem, Chennai 600089, Tamil Nadu, India
[5] King Saud Univ, Coll Appl Med Sci, Dept Community Hlth Sci, POB 10219, Riyadh 11433, Saudi Arabia
[6] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, Tamil Nadu, India
[7] Pukyong Natl Univ, Inst Energy Transport & Fus Res, Busan 48513, South Korea
[8] Pukyong Natl Univ, Dept Mat Syst Engn, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
H-g-C3N4/Bi2S3; Ciprofloxacin; Antibiotics; Hydrothermal method; Wastewater; CIPROFLOXACIN; G-C3N4; ENVIRONMENT; EFFICIENCY; HETEROJUNCTIONS; FABRICATION; MECHANISM; REMOVAL;
D O I
10.1016/j.jiec.2024.09.045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Abnormal concentrations of antibiotics found in aquatic environments have raised serious environmental concerns. For the efficient degradation of antibiotics, it is necessary to develop photocatalysts that react to visible light. In this work, calcination and hydrothermal methods were used to synthesize bare H-g-C3N4 and Bi2S3, respectively. Various analytic methods, such as XRD, XPS, FT-IR, HR-SEM, and HR-TEM, were utilized to verify the accomplished synthesis of the materials produced. The results of ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS) showed that the synthesized nanocomposites exhibited a lower band gap than the bare materials and thus greater visible-light absorption. The degradation efficacy of the bare materials and hydrothermally synthesized nanocomposites over ciprofloxacin were investigated. A high degradation efficiency of 92 % was demonstrated for ciprofloxacin using the H-g-C3N4/Bi2S3 (5 %) nanocomposite. This remarkable efficiency underscores the potential of this nanocomposite in removing antibiotic pollutants from wastewater. In addition, the electron transfer dynamics amid the two materials (H-g-C3N4 and Bi2S3) within the heterojunction was elucidated. The findings provide valuable insights into the mechanisms underlying the enhanced photocatalytic activity of nanocomposites, paving the way for further optimization and development of advanced photocatalytic systems for environmental remediation.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [21] Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO4/g-C3N4 heterojunction
    Shu Zhou
    Yinke Wang
    Guoqing Zhao
    Caifeng Li
    Lukai Liu
    Feipeng Jiao
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 2731 - 2743
  • [22] Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO4/g-C3N4 heterojunction
    Zhou, Shu
    Wang, Yinke
    Zhao, Guoqing
    Li, Caifeng
    Liu, Lukai
    Jiao, Feipeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (03) : 2731 - 2743
  • [23] Preparation of visible light responsive g-C3N4/H-TiO2 Z-scheme heterojunction with enhanced photocatalytic activity for RhB degradation
    Bo Yu
    Chun Miao
    Dandan Wang
    Hongji Li
    Dongshu Sun
    Wei Jiang
    Chunbo Liu
    Guangbo Che
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 17587 - 17598
  • [24] Preparation of visible light responsive g-C3N4/H-TiO2 Z-scheme heterojunction with enhanced photocatalytic activity for RhB degradation
    Yu, Bo
    Miao, Chun
    Wang, Dandan
    Li, Hongji
    Sun, Dongshu
    Jiang, Wei
    Liu, Chunbo
    Che, Guangbo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (22) : 17587 - 17598
  • [25] Novel Z-Scheme g-C3N4/C@Bi2MoO6 composite with enhanced visible-light photocatalytic activity for β-naphthol degradation
    Ma, Tianjin
    Wu, Juan
    Mi, Yidong
    Chen, Qinghua
    Ma, Dong
    Chai, Chao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 183 : 54 - 65
  • [26] Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products
    Chen, Danni
    Xie, Zhijie
    Zeng, Yongqin
    Lv, Wenying
    Zhang, Qianxin
    Wang, Fengliang
    Liu, Guoguang
    Liu, Haijin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 104 : 250 - 259
  • [27] Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate
    Jin, Chongyue
    Kang, Jin
    Li, Zhilin
    Wang, Min
    Wu, Zengmin
    Xie, Yuanhua
    APPLIED SURFACE SCIENCE, 2020, 514
  • [28] Enhanced visible-light Z-scheme photocatalytic degradation of amoxicillin, chlorpyrifos, and methylene blue by Bi2O3/g-C3N4/ZnO nanocomposite
    Vijayalakshmi, Pandurangan
    Shanmugavelan, Poovan
    Anisree, Sreenivasan
    Mareeswaran, Paulpandian Muthu
    JOURNAL OF MATERIALS RESEARCH, 2024, 39 (22) : 3103 - 3125
  • [29] Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis
    Cadan, Fellipe Magioli
    Ribeiro, Caue
    Azevedo, Eduardo Bessa
    APPLIED SURFACE SCIENCE, 2021, 537
  • [30] Construction of Z-scheme BiOI/g-C3N4 heterojunction with enhanced photocatalytic activity and stability under visible light
    Yuzhen Li
    Zhen Li
    Lizhen Gao
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 12769 - 12782