Tensor product random matrix theory

被引:1
|
作者
Altland, Alexander [1 ]
de Miranda, Joaquim Telles [2 ]
Micklitz, Tobias [2 ]
机构
[1] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[2] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
D O I
10.1103/PhysRevResearch.6.L042029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The evolution of complex correlated quantum systems such as random circuit networks is governed by the dynamical buildup of both entanglement and entropy. We here introduce a real-time field theory approach-essentially a fusion of the G E functional of the SYK model and the field theory of disordered systems-engineered to microscopically describe the full range of such crossover dynamics: from initial product states to a maximum entropy ergodic state. To showcase this approach in the simplest nontrivial setting, we consider a tensor product of coupled random matrices, and compare to exact diagonalization.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Typicality in random matrix product states
    Garnerone, Silvano
    de Oliveira, Thiago R.
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [22] Magic of random matrix product states
    Chen, Liyuan
    Garcia, Roy J.
    Bu, Kaifeng
    Jaffe, Arthur
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [23] On the integral with respect to the tensor product of two random measures
    Boudou, Alain
    Romain, Yves
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 385 - 394
  • [24] A note on the tensor product of two random unitary matrices
    Tkocz, Tomasz
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 7
  • [25] Matrix pencil generated by a tensor product from two matrix pencils
    Gracia, JM
    deElguea, LO
    Sodupe, MJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 249 : 289 - 310
  • [26] Random matrix theory and random uncertainties modeling
    Soize, C.
    COMPUTATIONAL STOCHASTIC MECHANICS, 2003, : 575 - 581
  • [27] Bifurcations and random matrix theory
    Pollner, P
    Eckhardt, B
    EUROPHYSICS LETTERS, 2001, 53 (06): : 703 - 708
  • [28] Combinatorics and random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [29] Quasiclassical random matrix theory
    Prange, RE
    PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2447 - 2450
  • [30] Superstatistics in random matrix theory
    Abul-Magd, AY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 41 - 54