The minimal augmented Zagreb index of k-apex trees for k∈{1,2,3}

被引:0
|
作者
Cheng, Kun [1 ]
Liu, Muhuo [1 ]
Belardo, Francesco [2 ]
机构
[1] Department of Mathematics, South China Agricultural University, Guangzhou,510642, China
[2] Department of Mathematics and Applications R. Caccioppoli, University of Naples Federico II, Naples,I-80126, Italy
关键词
Forestry;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G containing no component isomorphic to the 2-vertex path graph, the augmented Zagreb index (AZI) of G is defined as AZI(G)=∑uv∈E(G)([Formula presented])3.This topological index has been proved to be closely correlated with the formation heat of heptanes and octanes. A k-apex tree is a connected graph G admitting a k-subset of vertices X such that G−X is a tree, but for any subset of vertices X′ of order less than k, G−X′ is not a tree. In this paper, we determine the minimum AZI among all k-apex trees for k∈{1,2,3}. © 2021 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [31] On Ramsey (3K2,P3)-Minimal Graphs
    Muhshi, Hadi
    Baskoro, Edy Tri
    5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM5), 2012, 1450 : 110 - 117
  • [32] Spanning 3-ended trees in k-connected K 1,4-free graphs
    Chen Yuan
    Chen GuanTao
    Hu ZhiQuan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1579 - 1586
  • [33] Wiener index of iterated line graphs of trees homeomorphic to the claw K1,3
    Knor, Martin
    Potocnik, Primoz
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (02) : 211 - 219
  • [34] MINIMAL HILBERT MODULAR SURFACES WITH PG = 3 AND K2 = 2
    HIRZEBRUCH, F
    VANDEVEN, A
    AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (01) : 132 - 148
  • [35] PARAMETERS K1, K2, AND K3 IN MAGNETIC SUPERCONDUCTORS
    MATSUMOTO, H
    UMEZAWA, H
    TACHIKI, M
    PHYSICAL REVIEW B, 1982, 25 (11): : 6633 - 6643
  • [36] On the simultaneous Diophantine equations m . (x1k + x2k + ... plus xt1k) = n . (y1k + y2k + ... yt2k); k=1, 3
    Izadi, Farzali
    Baghalaghdam, Mehdi
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 190 - 195
  • [37] Dense packings of 3k(k+1)+1 equal disks in a circle for k=1 ,2, 3, 4, and 5
    Lubachevsky, BD
    Graham, RL
    COMPUTING AND COMBINATORICS, 1995, 959 : 303 - 312
  • [38] M3中k1k2-m(k1+k2)=1的类空曲面的构造
    曹锡芳
    扬州师院学报(自然科学版), 1997, (02) : 1 - 4
  • [39] Geometrical meaning of arithmetic series Sigma(n)(k=1) k, Sigma(n)(k=1) k(2) and Sigma(n)(k=1) k(3) in terms of the elementary combinatoricsy
    Kobayashi, Yukio
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2011, 42 (05) : 657 - 664
  • [40] The Domination Number of a Graph Pk((k1,k2),(k3,k4))
    Ruangnai, Monthiya
    Panma, Sayan
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 745 - 762