The minimal augmented Zagreb index of k-apex trees for k∈{1,2,3}

被引:0
|
作者
Cheng, Kun [1 ]
Liu, Muhuo [1 ]
Belardo, Francesco [2 ]
机构
[1] Department of Mathematics, South China Agricultural University, Guangzhou,510642, China
[2] Department of Mathematics and Applications R. Caccioppoli, University of Naples Federico II, Naples,I-80126, Italy
关键词
Forestry;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G containing no component isomorphic to the 2-vertex path graph, the augmented Zagreb index (AZI) of G is defined as AZI(G)=∑uv∈E(G)([Formula presented])3.This topological index has been proved to be closely correlated with the formation heat of heptanes and octanes. A k-apex tree is a connected graph G admitting a k-subset of vertices X such that G−X is a tree, but for any subset of vertices X′ of order less than k, G−X′ is not a tree. In this paper, we determine the minimum AZI among all k-apex trees for k∈{1,2,3}. © 2021 Elsevier Inc.
引用
收藏
相关论文
共 50 条
  • [21] General Sum-Connectivity Index with α ≥ 1 for Trees and Unicyclic Graphs with k Pendants
    Tache, Rozica-Maria
    Tomescu, Ioan
    2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 307 - 311
  • [22] ON UNIFORMLY RESOLVABLE {K-1,K-2, K-1,K-3}-DESIGNS
    Lo Faro, Giovanni
    Milici, Salvatore
    Tripodi, Antoinette
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2018, 96 : A91 - A97
  • [23] On Pell numbers and (k1A1, k2A2, k3A3)-edge colouring in graphs
    Trojnar-Spelina, Lucyna
    Wloch, Iwona
    ARS COMBINATORIA, 2016, 125 : 183 - 191
  • [24] 猜想M(2k,k+1)=3k-1+“(k-1)/2”的反例(英文)
    游 林
    王天明
    数学研究与评论, 2002, (02) : 194 - 196
  • [25] Corresponding distortions to the formulae (disregarding the k(1), k(2), k(3), terms)
    不详
    ANNALES DE CHIMIE ET DE PHYSIQUE, 1900, 20 : 327 - 335
  • [26] sumfrom(k=1ton)(Kp)(p=1,2,3,…)是如何求出的?
    傅海伦
    高等数学研究, 2002, (02) : 39 - 43
  • [27] RNS-to-Binary Converters for New Three-Moduli Sets {2k-3, 2k-2, 2k-1} and {2k+1, 2k+2, 2k+3}
    Phalguna, P. S.
    Kamat, Dattaguru V.
    Mohan, P. V. Ananda
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (14)
  • [28] 关于lim(1k+2k+3k+…+nk)/(nk+1)=1/(k+1)推广
    王秀英
    南都学坛, 1992, (S1) : 116 - 117
  • [29] BLOCKS AND BRAUER TREES FOR THE GROUPS G2(2K), G2(3K)
    SHAMASH, J
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (05) : 1375 - 1387
  • [30] Choice number of complete multipartite graphs K3*3,2*(k-5), 1*2 and K4,3*2,2*(k-6), 1*3
    He, Wenjie
    Zhang, Lingmin
    Cranston, Daniel W.
    Shen, Yufa
    Zheng, Guoping
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5871 - 5877