Parameter estimation in the stochastic SIR model via scaled geometric Brownian motion

被引:0
|
作者
Sanchez-Monroy, J. A. [1 ]
Riascos-Ochoa, Javier [2 ]
Bustos, Abel [3 ]
机构
[1] Univ Nacl Colombia, Dept Fis, Ciudad Univ,Cra 45 26-85, Bogota 111321, Colombia
[2] Univ Bogota Jorge Tadeo Lozano, Fac Ciencias Nat & Ingn, Cra 4 22-61, Bogota 110311, Colombia
[3] Pontificia Univ Javeriana Cali, Fac Ingn & Ciencias, Dept Ciencias Nat & Matemat, Cll 18 118-250, Cali 760031, Colombia
关键词
Stochastic; Epidemic models; Transmission rate; Volatility estimation; Seasonal forcing; Maximum likelihood; EPIDEMIC MODEL; BEHAVIOR;
D O I
10.1016/j.chaos.2024.115626
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic SIR epidemiological model offers a comprehensive understanding of infectious diseases dynamics by taking into account the effect of random fluctuations. However, because of the nonlinear nature the stochastic SIR model, accurately estimating its parameters presents a significant challenge, crucial unraveling the intricacies of disease propagation and developing effective control strategies. In this study, introduce a novel approach for the estimation of the parameters within the stochastic SIR model, including the often-neglected noise in the transmission rate (volatility). We employ a quasi-deterministic approximation, where the number of infected (susceptible) individuals evolves deterministically, whereas the number susceptible (infected) individuals evolves stochastically. The solutions of the resulting stochastic equations are scaled geometric Brownian motions (SGBM). Based on the maximum likelihood method applied the log-returns of susceptible (infected) individuals, we propose algorithms that yield numerical evidence of unbiased estimates of transmission and recovery rates. Our approach maintains robustness even in presence of increasing volatility, ensuring reliable estimations within reasonable limits. In more realistic scenarios where the model parameters vary with time, we demonstrate the adaptability of our algorithms for successful parameter estimation in sliding time windows. Notably, this approach is not only accurate but also straightforward to implement and computationally efficient.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Geometric fractional Brownian motion model for commodity market simulation
    Ibrahim, Siti Nur Iqmal
    Misiran, Masnita
    Laham, Mohamed Faris
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 955 - 962
  • [42] Parameter estimation in multi-compartment SIR model
    Saito, Masaya M.
    Imoto, Seiya
    Yamaguchi, Rui
    Miyano, Satoru
    Higuchi, Tomoyuki
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [43] Joint Estimation of States and Parameters in Stochastic SIR Model
    Liu, Peng
    Hendeby, Gustaf
    Gustafsson, Fredrik
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2022,
  • [44] Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method
    Yerlikaya-Ozkurt, F.
    Vardar-Acar, C.
    Yolcu-Okur, Y.
    Weber, G. -W.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 843 - 850
  • [45] On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    AUSTRIAN JOURNAL OF STATISTICS, 2014, 43 (03) : 217 - 228
  • [46] Parameter estimation of fractional Brownian motion processes: Wavelet packets based
    Sembiring, J
    Akizuki, K
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 77 - 81
  • [47] Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion
    Kim, Yoon Tae
    Park, Hyun Suk
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 181 - 188
  • [48] Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 600 - 612
  • [49] Some properties of linear stochastic distributed parameter systems with fractional Brownian motion
    Duncan, TE
    Maslowski, B
    Pasik-Duncan, B
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 808 - 812
  • [50] Asymptotic moment estimation for stochastic Lotka-Volterra model driven byG-Brownian motion
    He, Ping
    Ren, Yong
    Zhang, Defei
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (05) : 697 - 714