Parameter estimation of fractional Brownian motion processes: Wavelet packets based

被引:0
|
作者
Sembiring, J [1 ]
Akizuki, K [1 ]
机构
[1] Waseda Univ, Dept Elect Elect & Comp Engn, Shinjuku Ku, Tokyo 169, Japan
关键词
maximum likelihood estimator;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Correlation structure of wavelet packets will be derived first. Then it will be proved that for fractional Brownian motion (fBm) processes, correlation coefficients will decrease exponentially across the wavelet packets scales-in other words almost KL-expansion. Based on the derived theorem, it is possible to estimate the parameters of fBm processes. Flexibility of the wavelet packet structure permits us to choose the bases accordingly. From simulation results it can be concluded that by utilizing wavelet packets it is possible to get better estimate with fewer computation than the previously announced wavelet based estimation method.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 50 条
  • [1] Wavelet Packets of Fractional Brownian Motion: Asymptotic Analysis and Spectrum Estimation
    Atto, Abdourrahmane Mahamane
    Pastor, Dominique
    Mercier, Gregoire
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4741 - 4753
  • [2] Fractional Brownian motion and parameter estimation
    Janak, Josef
    [J]. 34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 359 - 364
  • [3] Wavelet estimation for operator fractional Brownian motion
    Abry, Patrice
    Didier, Gustavo
    [J]. BERNOULLI, 2018, 24 (02) : 895 - 928
  • [4] Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations
    Ralchenko, Kostiantyn
    Yakovliev, Mykyta
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 1 - 29
  • [5] Continuous wavelet estimation for multivariate fractional Brownian motion
    Hmood, Munaf Y.
    Hamza, Amjad H.
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2022, 18 (03) : 633 - 641
  • [6] On drift parameter estimation in models with fractional Brownian motion
    Kozachenko, Y.
    Melnikov, A.
    Mishura, Y.
    [J]. STATISTICS, 2015, 49 (01) : 35 - 62
  • [7] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [8] Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter
    Pashko, Anatolii
    Sinyayska, Olga
    Oleshko, Tetiana
    [J]. 15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 632 - 637
  • [9] Wavelet estimation of fractional Brownian motion embedded in a noisy environment
    Zhang, L
    Bao, P
    Wu, XL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 2194 - 2200
  • [10] Tempered fractional Brownian motion: Wavelet estimation, modeling and testing
    Boniece, B. Cooper
    Didier, Gustavo
    Sabzikar, Farzad
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 : 461 - 509