Active thermography for in-situ defect detection in laser powder bed fusion of metal

被引:0
|
作者
Hoefflin, Dennis [1 ,3 ]
Sauer, Christian [1 ,3 ]
Schiffler, Andreas [1 ,3 ]
Versch, Alexander [1 ,3 ]
Hartmann, Juergen [1 ,2 ]
机构
[1] Tech Univ Appl Sci Wurzburg Schweinfurt, Ignaz Schon Str 11, D-97421 Schweinfurt, Germany
[2] Ctr Appl Energy Res eV CAE, Magdalene Schoch Str 3, D-97074 Wurzburg, Germany
[3] Technol Transfer Ctr Main Spessart, Spessartstr 1, D-97828 Marktheidenfeld, Germany
关键词
Active thermography; PBF-LB/M; Non-destructive testing; SPIT; Process monitoring; MANUFACTURED COMPONENTS; ACOUSTIC-EMISSION; ULTRASOUND; POROSITY;
D O I
10.1016/j.jmapro.2024.09.085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) has revolutionized production by offering design flexibility, reducing material waste, and enabling intricate geometries that are often unachievable with traditional methods. As the use of AM for metals continues to expand, it is crucial to ensure the quality and integrity of printed components. Defects can compromise the mechanical properties and performance of the final product. Non-destructive testing (NDT) techniques are necessary to detect and characterize anomalies during or post-manufacturing. Active thermography, a thermal imaging technique that uses an external energy source to induce temperature variations, has emerged as a promising tool in this field. This paper explores the potential of in-situ non-destructive testing using the processing laser of a PBF-LB/M setup as an excitation source for active thermography. With this technological approach, artificially generated internal defects underneath an intact surface can be detected down to a defect size of 350 mu m - 450 mu m.
引用
收藏
页码:1758 / 1769
页数:12
相关论文
共 50 条
  • [31] BRIEF PAPER: PROCESS MONITORING AND FAULT DETECTION IN LASER POWDER BED FUSION USING IN-SITU ACOUSTIC EMISSIONS
    Bevans, Benjamin D.
    Riensche, Alexander
    Plotnikov, Yuri
    Sions, John
    Snyder, Kyle
    Hass, Derek
    Rao, Prahalada
    PROCEEDINGS OF ASME 2024 19TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2024, VOL 1, 2024,
  • [32] Efficient and lightweight layer-wise in-situ defect detection in laser powder bed fusion via knowledge distillation and structural re-parameterization
    Tan, Kunpeng
    Tang, Jiafeng
    Zhao, Zhibin
    Wang, Chenxi
    Miao, Huihui
    Zhang, Xingwu
    Chen, Xuefeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [33] In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties
    Williams, Richard J.
    Piglione, Alessandro
    Ronneberg, Tobias
    Jones, Connor
    Minh-Son Pham
    Davies, Catrin M.
    Hooper, Paul A.
    ADDITIVE MANUFACTURING, 2019, 30
  • [34] In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion
    Zhang Hao
    Hou Yaqing
    Wang Xuandong
    Su Hang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (04):
  • [35] In-situ infrared thermographic inspection for local powder layer thickness measurement in laser powder bed fusion
    Liu, Tao
    Lough, Cody S.
    Sehhat, Hossein
    Ren, Yi Ming
    Christofides, Panagiotis D.
    Kinzel, Edward C.
    Leu, Ming C.
    ADDITIVE MANUFACTURING, 2022, 55
  • [36] An integrated simulation model towards laser powder bed fusion in-situ alloying technology
    Hou, Yaqing
    Su, Hang
    Zhang, Hao
    Li, Fafa
    Wang, Xuandong
    He, Yazhou
    He, Dupeng
    MATERIALS & DESIGN, 2023, 228
  • [37] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Ayda Shahriari
    Mehdi Sanjari
    Mahdi Mahmoudiniya
    Hadi Pirgazi
    Babak Shalchi Amirkhiz
    Leo A. I. Kestens
    Mohsen Mohammadi
    Metallurgical and Materials Transactions A, 2024, 55 : 1302 - 1310
  • [38] In-situ monitoring of laser-based powder bed fusion using fringe projection
    Remani, Afaf
    Rossi, Arianna
    Pena, Fernando
    Thompson, Adam
    Dardis, John
    Jones, Nick
    Senin, Nicola
    Leach, Richard
    ADDITIVE MANUFACTURING, 2024, 90
  • [39] In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review
    McCann, Ronan
    Obeidi, Muhannad A.
    Hughes, Cian
    McCarthy, Eanna
    Egan, Darragh S.
    Vijayaraghavan, Rajani K.
    Joshi, Ajey M.
    Garzon, Victor Acinas
    Dowling, Denis P.
    McNally, Patrick J.
    Brabazon, Dermot
    ADDITIVE MANUFACTURING, 2021, 45
  • [40] In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion
    Hojjatzadeh, S. Mohammad H.
    Guo, Qilin
    Parab, Niranjan D.
    Qu, Minglei
    Escano, Luis, I
    Fezzaa, Kamel
    Everhart, Wes
    Sun, Tao
    Chen, Lianyi
    MATERIALS, 2021, 14 (11)