Active thermography for in-situ defect detection in laser powder bed fusion of metal

被引:0
|
作者
Hoefflin, Dennis [1 ,3 ]
Sauer, Christian [1 ,3 ]
Schiffler, Andreas [1 ,3 ]
Versch, Alexander [1 ,3 ]
Hartmann, Juergen [1 ,2 ]
机构
[1] Tech Univ Appl Sci Wurzburg Schweinfurt, Ignaz Schon Str 11, D-97421 Schweinfurt, Germany
[2] Ctr Appl Energy Res eV CAE, Magdalene Schoch Str 3, D-97074 Wurzburg, Germany
[3] Technol Transfer Ctr Main Spessart, Spessartstr 1, D-97828 Marktheidenfeld, Germany
关键词
Active thermography; PBF-LB/M; Non-destructive testing; SPIT; Process monitoring; MANUFACTURED COMPONENTS; ACOUSTIC-EMISSION; ULTRASOUND; POROSITY;
D O I
10.1016/j.jmapro.2024.09.085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) has revolutionized production by offering design flexibility, reducing material waste, and enabling intricate geometries that are often unachievable with traditional methods. As the use of AM for metals continues to expand, it is crucial to ensure the quality and integrity of printed components. Defects can compromise the mechanical properties and performance of the final product. Non-destructive testing (NDT) techniques are necessary to detect and characterize anomalies during or post-manufacturing. Active thermography, a thermal imaging technique that uses an external energy source to induce temperature variations, has emerged as a promising tool in this field. This paper explores the potential of in-situ non-destructive testing using the processing laser of a PBF-LB/M setup as an excitation source for active thermography. With this technological approach, artificially generated internal defects underneath an intact surface can be detected down to a defect size of 350 mu m - 450 mu m.
引用
收藏
页码:1758 / 1769
页数:12
相关论文
共 50 条
  • [21] In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion
    Mirzababaei, Saereh
    Ghayoor, Milad
    Doyle, Ryan P.
    Pasebani, Somayeh
    MATERIALS LETTERS, 2021, 284
  • [22] Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion
    Caltanissetta, Fabio
    Grasso, Marco
    Petro, Stefano
    Colosimo, Bianca Maria
    ADDITIVE MANUFACTURING, 2018, 24 : 183 - 199
  • [23] Homogenization of an Al alloy processed by laser powder bed fusion in-situ alloying
    Bosio, Federico
    Manfredi, Diego
    Lombardi, Mariangela
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904
  • [24] In-situ alloying in powder bed fusion: The role of powder morphology
    Knieps, Marius S.
    Reynolds, William J.
    Dejaune, Juliette
    Clare, Adam T.
    Evirgen, Alper
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 807
  • [25] META-DATA FOR IN-SITU MONITORING OF LASER POWDER BED FUSION PROCESSES
    Feng, Shaw C.
    Lu, Yan
    Jones, Albert T.
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A, 2020,
  • [26] In-situ monitoring techniques for laser powder bed fusion additive manufacturing:a review
    Li Z.
    Zhang Y.
    Zhong K.
    Shi Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (12): : 1 - 9and27
  • [27] In-situ measurement and monitoring methods for metal powder bed fusion: an updated review
    Grasso, M.
    Remani, A.
    Dickins, A.
    Colosimo, B. M.
    Leach, R. K.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [28] Effect of powder and process parameters on in-situ alloying of nitinol during laser powder bed fusion
    Bourke, Declan
    Selvam, Karthikeyan Tamil
    Obeidi, Muhannad Ahmed
    Ul Ahad, Inam
    Brabazon, Dermot
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 7988 - 7997
  • [29] Unveiling the layer-wise dynamics of defect evolution in laser powder bed fusion: Insights for in-situ monitoring and control
    Chen, Xiangyuan
    Liao, Wenhe
    Yue, Jiashun
    Liu, Tingting
    Zhang, Kai
    Li, Jiansen
    Yang, Tao
    Liu, Haolin
    Wei, Huiliang
    ADDITIVE MANUFACTURING, 2024, 94
  • [30] Pixelwise high-temperature calibration for in-situ temperature measuring in powder bed fusion of metal with laser beam
    Hoefflin, Dennis
    Sauer, Christian
    Schiffler, Andreas
    Manara, Jochen
    Hartmann, Juergen
    HELIYON, 2024, 10 (07)