NON-HERMITIAN ORTHOGONAL POLYNOMIALS ON A TREFOIL

被引:0
|
作者
Barhoumi, Ahmad B. [1 ]
Yattselev, Maxim L. [2 ]
机构
[1] Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor,MI,48109, United States
[2] Department of Mathematical Sciences, Indiana University, Purdue University Indianapolis, 402 North Black-ford Street, Indianapolis,IN,46202, United States
来源
arXiv | 2023年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Polynomials
引用
收藏
相关论文
共 50 条
  • [41] Non-Hermitian Floquet invisibility
    Longhi, S.
    EPL, 2017, 117 (01)
  • [42] Non-Hermitian localization and delocalization
    Feinberg, J
    Zee, A
    PHYSICAL REVIEW E, 1999, 59 (06): : 6433 - 6443
  • [43] Non-Hermitian squeezed polarons
    Qin, Fang
    Shen, Ruizhe
    Lee, Ching Hua
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [44] Non-Hermitian quantum rings
    Longhi, Stefano
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [45] Non-Hermitian Global Synchronization
    Zhang, Weixuan
    Di, Fengxiao
    Zhang, Xiangdong
    ADVANCED SCIENCE, 2025, 12 (02)
  • [46] Non-Hermitian Hydrogen atom
    Romero, Juan M.
    Gonzalez-Gaxiola, O.
    Bernal-Jaquez, R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 1990 - 2000
  • [47] Non-Hermitian Line Waves
    Galdi, V
    2021 FIFTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2021, : X129 - X131
  • [48] The dawn of non-Hermitian optics
    El-Ganainy, Ramy
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    Ozdemir, Sahin K.
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [49] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [50] Non-hermitian quantum thermodynamics
    Bartłomiej Gardas
    Sebastian Deffner
    Avadh Saxena
    Scientific Reports, 6