Fracture Pressure Prediction in Carbonate Reservoir Using Artificial Neural Networks

被引:0
|
作者
Faraj, Ali Khaleel [1 ]
Salih, Ameen K. [1 ]
Ahmed, Mohammed A. [1 ]
Hadi, Farqad A. [2 ]
Al-Hasnawi, Ali Nahi Abed [3 ]
Zaidan, Ali Faraj [2 ]
机构
[1] Univ Technol Iraq, Oil & Gas Engn Dept, Baghdad 10066, Iraq
[2] Univ Baghdad, Coll Engn, Petr Engn Dept, Baghdad 10071, Iraq
[3] Iraqi Minist Oil, Petr Res & Dev Ctr, Baghdad 10085, Iraq
关键词
artificial neural networks; fracture pressure; R-squared value; sonic logs; GRADIENT PREDICTION;
D O I
10.1134/S0965544124050050
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Accurately estimating fracture pressure is a critical factor in the success of the oil field industry. Fracture pressure is used in various applications, including increasing production and injection processes, making it essential to determine precisely. This study aims to predict the fracture pressure for Iraqi oil field using artificial intelligence techniques, such studies are crucial in optimizing oil field production and minimizing risks. Artificial intelligence (AI) methodologies employed a dataset comprising approximately 13 000 data points for different logs parameters. The input layer is employing the input parameter (neutron, density, gamma ray, rock strength (UCS), true vertical depth (TVD), Young's modulus (E), and Poisson ratio (v). The obtained results should be remarkable R2 of 0.86. The optimal approach entails utilizing readily available log data, including sonic logs compression and shear (DTC, DTS) commendable R-squared value of 0.84. Artificial neural networks (ANN) have the upper hand over empirical models, as they require important data, only surface drilling parameters, which are easily accessible and use it from any well. In addition, a new fracture pressure correlation depended on artificial neural networks (ANN) has been created, which can accurately predict fracture pressure. The findings of the study can provide valuable insights for the oil and gas industry in predicting fracture pressure accurately and efficiently.
引用
收藏
页码:796 / 803
页数:8
相关论文
共 50 条
  • [31] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [32] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [33] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [34] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [35] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [36] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [37] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33
  • [38] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [39] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [40] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228