Optimization of erosion performance of biomass and pet waste based composites using artificial neural network

被引:0
|
作者
Alagulakshmi, R. [1 ]
Ramalakshmi, R. [2 ]
Arumugaprabu, V. [3 ]
Subbiah, Ajith [4 ]
Padmakala, S. [5 ]
Yang, Yo Lun [6 ]
机构
[1] Kalasalingam Acad Res Educ, Dept Comp Applicat, Krishnankoil 626126, India
[2] Kalasalingam Acad Res Educ, Dept Comp Sci & Engn, Krishnankoil 626126, India
[3] Kalasalingam Acad Res Educ, Dept Mech Engn, Krishnankoil 626126, India
[4] Buraydah Private Coll, Coll Engn & Informat Technol, Dept Fire Protect & Safety Engn, Buraydah 51418, Saudi Arabia
[5] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Comp Sci & Engn, Chennai, India
[6] Natl Taipei Univ Technol, Grad Inst Mfg Technol, Taipei 10608, Taiwan
关键词
Agricultural waste; Bio char; Polymer composites; Erosive wear; ANN;
D O I
10.1007/s42452-024-06313-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The determination of the potentiality of renewable energy resources holds significant importance, with biomass emerging as a crucial alternative for both energy and material needs. Consequently, predicting the mechanical properties of these resources has become a focal point. This study focuses on the analysis of fundamental products resulting from the pyrolysis process, specifically char, extracted from Polyethylene terephthalate (PET) Char, Cashew biochar, and Sugarcane biochar and examining erosion performance of polyester composites. The polyester composites subjected to erosion tests to determine their wear resistance at various impact angles. Among the studied composites, those including cashew biochar shown enhanced erosion resistance, with the least erosive wear at a 60 degrees impact angle. The investigation aims at optimizing the erosion performance of these biomass-based composites using an Artificial Neural Network (ANN) model. The ANN was trained to predict erosive wear behavior using input factors as biochar type, filler content, and impact angle. The model effectively found ideal conditions for decreasing wear, demonstrating the potential of Cashew biochar-filled composites for applications needing high erosion resistance. This work sheds light on the successful usage of biochar fillers in improving the durability of polyester composites, presenting a sustainable alternative for materials engineering. Cashew biochar-filled composites showed the least erosive wear at a 60 & ring; impact angle, optimizing erosion resistance.ANN model effectively predicted erosion behaviour, identifying ideal conditions to minimize wear in composites.Biochar fillers, particularly Cashew biochar, enhance polyester composite durability, offering a sustainable material alternative.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Optimization of Rainfall Intensities Classification Based on Artificial Intelligence Using Recurrent Neural Network
    Lazri, Mourad
    Labadi, Karim
    Ouallouche, Fethi
    Ameur, Soltane
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 39 - 48
  • [32] Optimization of Load Forecasting in Smartgrid using Artificial Neural Network based NFTOOL and NNTOOL
    Mishra S.
    Ganthia B.P.
    Sridharan A.
    Rajakumar P.
    Padmapriya D.
    Kaliappan S.
    Journal of Physics: Conference Series, 2022, 2161 (01)
  • [33] Predictive Modelling On Machining Performance of ECDM Using Artificial Neural Network and Particle Swarm Optimization
    Lusi, Nuraini
    Fiveriati, Anggra
    Afandi, Akhmad
    Wedarma, I. Gusti Ngurah Bagus Catra
    Yuliandoko, Herman
    Darsin, Mahros
    Qutaba, Syed
    MANUFACTURING TECHNOLOGY, 2023, 23 (05): : 649 - 662
  • [34] ARTIFICIAL NEURAL NETWORK OPTIMIZATION MODELING ON ENGINE PERFORMANCE OF DIESEL ENGINE USING BIODIESEL FUEL
    Shukri, M. R.
    Rahman, M. M.
    Ramasamy, D.
    Kadirgama, K.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2015, 11 : 2332 - 2347
  • [35] Brain PET dose reduction using a shallow artificial neural network
    Yang, Bao
    Fontaine, Kathryn
    Carson, Richard
    Tang, Jing
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [36] Artificial neural network-based performance assessments
    Stevens, R
    Ikeda, J
    Casillas, A
    Palacio-Cayetano, J
    Clyman, S
    COMPUTERS IN HUMAN BEHAVIOR, 1999, 15 (3-4) : 295 - 313
  • [37] Artificial neural network-based performance assessments
    Stevens, R.
    Ikeda, J.
    Casillas, A.
    Palacio-Cayetano, J.
    Clyman, S.
    Computers in Human Behavior, 1999, 15 (03): : 295 - 313
  • [38] Optimization of milling parameters using artificial neural network and artificial immune system
    Ramezan Ali Mahdavinejad
    Navid Khani
    Mir Masoud Seyyed Fakhrabadi
    Journal of Mechanical Science and Technology, 2012, 26 : 4097 - 4104
  • [39] Optimization of milling parameters using artificial neural network and artificial immune system
    Mahdavinejad, Ramezan Ali
    Khani, Navid
    Fakhrabadi, Mir Masoud Seyyed
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (12) : 4097 - 4104
  • [40] A double-objective prediction and optimization method for buoys performance based on the artificial neural network
    Jiang, Chunyu
    Cao, Feifei
    Li, Demin
    Wei, Zhiwen
    Shi, Hongda
    OCEAN ENGINEERING, 2023, 282