Optimization of milling parameters using artificial neural network and artificial immune system

被引:25
|
作者
Mahdavinejad, Ramezan Ali [1 ,2 ]
Khani, Navid [1 ]
Fakhrabadi, Mir Masoud Seyyed [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
关键词
Milling; Ti-6Al-4V; Artificial neural network; Artificial immune system; FUZZY INFERENCE SYSTEM; SURFACE-ROUGHNESS; PREDICTION;
D O I
10.1007/s12206-012-0882-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work-piece made of Ti-6Al-4V using a multi-perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented.
引用
收藏
页码:4097 / 4104
页数:8
相关论文
共 50 条
  • [1] Optimization of milling parameters using artificial neural network and artificial immune system
    Ramezan Ali Mahdavinejad
    Navid Khani
    Mir Masoud Seyyed Fakhrabadi
    Journal of Mechanical Science and Technology, 2012, 26 : 4097 - 4104
  • [2] Optimization of Milling Parameters of Gun Metal Using Fuzzy Logic and Artificial Neural Network Approach
    Sasindran, Visnu
    Vignesh, M.
    Krishna, Arvind S.
    Madusudhanan, A.
    Gokulachandran, J.
    INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND MANUFACTURING APPLICATIONS (ICONAMMA-2018), 2019, 577
  • [3] Prediction of end milling process parameters using artificial neural network
    Parmar, Jignesh G.
    Dave, K. G.
    Gohil, A., V
    Trivedi, H. S.
    MATERIALS TODAY-PROCEEDINGS, 2021, 38 : 3168 - 3176
  • [4] Bike sharing demand prediction using artificial immune system and artificial neural network
    Pei-Chann Chang
    Jheng-Long Wu
    Yahui Xu
    Min Zhang
    Xiao-Yong Lu
    Soft Computing, 2019, 23 : 613 - 626
  • [5] Bike sharing demand prediction using artificial immune system and artificial neural network
    Chang, Pei-Chann
    Wu, Jheng-Long
    Xu, Yahui
    Zhang, Min
    Lu, Xiao-Yong
    SOFT COMPUTING, 2019, 23 (02) : 613 - 626
  • [6] Optimization of identifying insulinaemic pharmacokinetic parameters using artificial neural network
    Othman, Nor Azlan
    Azhar, Muhammad Amirul Aizad Shaharul
    Damanhuri, Nor Salwa
    Mahadi, Iqmal Ammar
    Abbas, Mohd Hussaini
    Shamsuddin, Sarah Addyani
    Chase, J. Geoffrey
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 236
  • [7] Optimization of process parameters in feed manufacturing using artificial neural network
    Sudha, L.
    Dillibabu, R.
    Srinivas, S. Srivatsa
    Annamalai, A.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 120 : 1 - 6
  • [8] Stator optimization using artificial neural network
    Liu, Bo
    Xuan, Yang
    Chen, Yun-Yong
    Tuijin Jishu/Journal of Propulsion Technology, 2009, 30 (05): : 576 - 580
  • [9] Modelling of sizing the photovoltaic system parameters using artificial neural network
    Mellit, A
    Benghanem, M
    Arab, AH
    Guessoum, A
    CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 353 - 357
  • [10] Optimization of wood machining parameters using artificial neural network in CNC router
    Cakmak, Ali
    Malkocoglu, Abdulkadir
    Ozsahin, Sukru
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (14) : 1728 - 1744