Optimization of milling parameters using artificial neural network and artificial immune system

被引:25
|
作者
Mahdavinejad, Ramezan Ali [1 ,2 ]
Khani, Navid [1 ]
Fakhrabadi, Mir Masoud Seyyed [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Univ Tehran, Fac Engn, Sch Mech Engn, Tehran, Iran
关键词
Milling; Ti-6Al-4V; Artificial neural network; Artificial immune system; FUZZY INFERENCE SYSTEM; SURFACE-ROUGHNESS; PREDICTION;
D O I
10.1007/s12206-012-0882-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present paper is an attempt to predict the effective milling parameters on the final surface roughness of the work-piece made of Ti-6Al-4V using a multi-perceptron artificial neural network. The required data were collected during the experiments conducted on the mentioned material. These parameters include cutting speed, feed per tooth and depth of cut. A relatively newly discovered optimization algorithm entitled, artificial immune system is used to find the best cutting conditions resulting in minimum surface roughness. Finally, the process of validation of the optimum condition is presented.
引用
收藏
页码:4097 / 4104
页数:8
相关论文
共 50 条
  • [31] Analysis of Laser welding parameters using artificial neural network
    Mechanical Engg. Department, National Institute of Technology, Tiruchirappalli 622 015, India
    不详
    Int J Joining Mater, 2006, 3-4 (99-104):
  • [32] Mine detection using scattering parameters and an artificial neural network
    Plett, GL
    Doi, T
    Torrieri, D
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (06): : 1456 - 1467
  • [33] Landmines Discrimination Using Scattering Parameters and an Artificial Neural Network
    Zainud-Deen, S. H.
    El-Hadad, E. S.
    Awadalla, K. H.
    Sharshar, H. A.
    NRSC: 2009 NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2009, VOLS 1 AND 2, 2009, : 1012 - 1012
  • [34] Parameters Estimation of PV Models Using Artificial Neural Network
    Hussein Abdellatif
    Md Ismail Hossain
    Mohammad A. Abido
    Arabian Journal for Science and Engineering, 2022, 47 : 14947 - 14956
  • [35] Mine detection using scattering parameters and an artificial neural network
    Stanford Univ, Stanford, United States
    IEEE Trans Neural Networks, 6 (1456-1467):
  • [36] Performance parameters estimation of MAC by using artificial neural network
    Atik, Kemal
    Aktas, Abdurrazzak
    Deniz, Emrah
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 5436 - 5442
  • [37] Prediction of compressibility parameters of the soils using artificial neural network
    Kurnaz, T. Fikret
    Dagdeviren, Ugur
    Yildiz, Murat
    Ozkan, Ozhan
    SPRINGERPLUS, 2016, 5
  • [38] Evaluation of bacteriological parameters in water using artificial neural network
    Mallesh, T.V.
    Prakash, S.M.
    Kumar, L. Prasanna
    Jayaramappa, N.
    Nature Environment and Pollution Technology, 2011, 10 (01) : 159 - 166
  • [39] ANALYSIS OF CROWD FLOW PARAMETERS USING ARTIFICIAL NEURAL NETWORK
    Yugendar, Poojari
    Ravishankar, K. V. R.
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2018, 19 (04) : 335 - 345
  • [40] Optimization of injection molding process parameters by a hybrid of artificial neural network and artificial bee colony algorithm
    Alvarado Iniesta, Alejandro
    Garcia Alcaraz, Jorge L.
    Rodriguez Borbon, Manuel Ivan
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2013, (67): : 43 - 51