Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM

被引:0
|
作者
Qu, Wanbo [1 ]
Zhao, Zhihao [1 ]
Yang, Yuxuan [1 ]
Zhang, Yang [1 ,2 ,3 ,4 ]
Guo, Shengwu [1 ]
Li, Fei [1 ,2 ,3 ]
Ding, Xiangdong [1 ]
Sun, Jun [1 ]
Wu, Haijun [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[4] Xi An Jiao Tong Univ, Instrumental Anal Ctr, Xian 710049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
AC-STEM; quantitative analysis; polarization; electronic functional materials; GIANT PIEZOELECTRICITY; DOMAIN-WALLS; STRAIN; POLARIZATION; CERAMICS; CONTRAST; ORIGIN; OXYGEN;
D O I
10.1088/1674-1056/ad7afc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope (AC-STEM) makes it an advanced and practical characterization technique for all materials. Owing to the prosperous advancement in computational technology, specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process. Utilizing advanced image processing algorithms promotes the rectification of image distortions, concurrently elevating the overall image quality to superior standards. Extracting high-resolution, pixel-level discrete information and converting it into atomic-scale, followed by performing statistical calculations on the physical matters of interest through quantitative analysis, represent an effective strategy to maximize the value of electron microscope images. The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers. This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives: contrast, lattice and strain, as well as atomic displacements and polarization. It further elaborates on practical applications of these methods in electronic functional materials, notably in piezoelectrics/ferroelectrics and thermoelectrics. It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research, elucidating the structure-property correlations in high-performance systems, and guiding synthesis strategies.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Aberration-corrected STEM: current performance and future directions
    Nellist, P. D.
    Chisholm, M. F.
    Lupini, A. R.
    Borisevich, A.
    Sides, W. H., Jr.
    Pennycook, S. J.
    Dellby, N.
    Keyse, R.
    Krivanek, O. L.
    Murfitt, M. F.
    Szilagyi, Z. S.
    EMAG-NANO 2005: IMAGING, ANALYSIS AND FABRICATION ON THE NANOSCALE, 2006, 26 : 7 - +
  • [32] Aberration-corrected STEM/TEM imaging at 15 kV
    Sasaki, Takeo
    Sawada, Hidetaka
    Hosokawa, Fumio
    Sato, Yuta
    Suenaga, Kazu
    ULTRAMICROSCOPY, 2014, 145 : 50 - 55
  • [33] Experimental evaluation of a spherical aberration-corrected TEM and STEM
    Sawada, H
    Tomita, T
    Naruse, M
    Honda, T
    Hambridge, P
    Hartel, P
    Haider, M
    Hetherington, C
    Doole, R
    Kirkland, A
    Hutchison, J
    Titchmarsh, J
    Cockayne, D
    JOURNAL OF ELECTRON MICROSCOPY, 2005, 54 (02) : 119 - 121
  • [34] Motion of gold atoms on carbon in the aberration-corrected STEM
    Batson, Philip E.
    MICROSCOPY AND MICROANALYSIS, 2008, 14 (01) : 89 - 97
  • [35] Materials Advances through Aberration-Corrected Electron Microscopy
    S. J. Pennycook
    M. Varela
    C. J. D. Hetherington
    A. I. Kirkland
    MRS Bulletin, 2006, 31 : 36 - 43
  • [36] Seeing inside materials by aberration-corrected electron microscopy
    Pennycook, S. J.
    van Benthem, K.
    Marinopoulos, A. G.
    Oh, S-H.
    Molina, S. I.
    Borisevich, A. Y.
    Luo, W.
    Pantelides, S. T.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2011, 8 (10-12) : 935 - 947
  • [37] Materials advances through aberration-corrected electron microscopy
    Pennycook, SJ
    Varela, M
    Hetherington, CJD
    Kirkland, AI
    MRS BULLETIN, 2006, 31 (01) : 36 - 43
  • [38] Atomic-Resolution Aberration-Corrected Transmission Electron Microscopy
    Urban, Knut
    Houben, Lothar
    Jia, Chun-Lin
    Lentzen, Markus
    Mi, Shao-Bo
    Thust, Andreas
    Tillmann, Karsten
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 153, 2008, 153 : 439 - 480
  • [39] Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM
    Balades, N.
    Sales, D. L.
    Herrera, M.
    Tan, C. H.
    Liu, Y.
    Richards, R. D.
    Molina, S. I.
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [40] Studying atomic structures by aberration-corrected transmission electron microscopy
    Urban, Knut W.
    SCIENCE, 2008, 321 (5888) : 506 - 510